Joint injuries and the resulting posttraumatic osteoarthritis (OA) are a significant problem. There is still a need for tools to evaluate joint injuries, their effect on joint mechanics, and the relationship between altered mechanics and OA. Better understanding of injuries and their relationship to OA may aid in the development or refinement of treatment methods. This may be partially achieved by monitoring changes in joint mechanics that are a direct consequence of injury. Techniques such as image-based finite element modeling can provide in vivo joint mechanics data but can also be laborious and computationally expensive. Alternate modeling techniques that can provide similar results in a computationally efficient manner are an attractive prospect. It is likely possible to estimate risk of OA due to injury from surface contact mechanics data alone. The objective of this study was to compare joint contact mechanics from image-based surface contact modeling (SCM) and finite element modeling (FEM) in normal, injured (scapholunate ligament tear), and surgically repaired radiocarpal joints. Since FEM is accepted as the gold standard to evaluate joint contact stresses, our assumption was that results obtained using this method would accurately represent the true value. Magnetic resonance images (MRI) of the normal, injured, and postoperative wrists of three subjects were acquired when relaxed and during functional grasp. Surface and volumetric models of the radiolunate and radioscaphoid articulations were constructed from the relaxed images for SCM and FEM analyses, respectively. Kinematic boundary conditions were acquired from image registration between the relaxed and grasp images. For the SCM technique, a linear contact relationship was used to estimate contact outcomes based on interactions of the rigid articular surfaces in contact. For FEM, a pressure-overclosure relationship was used to estimate outcomes based on deformable body contact interactions. The SCM technique was able to evaluate variations in contact outcomes arising from scapholunate ligament injury and also the effects of surgical repair, with similar accuracy to the FEM gold standard. At least 80% of contact forces, peak contact pressures, mean contact pressures and contact areas from SCM were within 10 N, 0.5 MPa, 0.2 MPa, and 15 mm2, respectively, of the results from FEM, regardless of the state of the wrist. Depending on the application, the MRI-based SCM technique has the potential to provide clinically relevant subject-specific results in a computationally efficient manner compared to FEM.

References

1.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.10.1115/1.2953472
2.
Blemker
,
S. S.
,
Asakawa
,
D. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities
,”
J. Magn. Reson. Imaging
,
25
(
2
), pp.
441
451
.10.1002/jmri.20805
3.
Anderson
,
D. D.
,
Chubinskaya
,
S.
,
Guilak
,
F.
,
Martin
,
J. A.
,
Oegema
,
T. R.
,
Olson
,
S. A.
, and
Buckwalter
,
J. A.
,
2011
, “
Post-Traumatic Osteoarthritis: Improved Understanding and Opportunities for Early Intervention
,”
J. Orthop. Res.
,
29
(
6
), pp.
802
809
.10.1002/jor.21359
4.
Alonso-Rasgado
,
T.
,
Jimenez-Cruz
,
D.
,
Bailey
,
C. G.
,
Mandal
,
P.
, and
Board
,
T.
,
2012
, “
Changes in the Stress in the Femoral Head Neck Junction after Osteochondroplasty for Hip Impingement: A Finite Element Study
,”
J. Orthop. Res.
,
30
(
12
), pp.
1999
2006
.10.1002/jor.22164
5.
Chizari
,
M.
,
Snow
,
M.
, and
Wang
,
B.
,
2011
, “
Post-Operative Assessment of an Implant Fixation in Anterior Cruciate Ligament Reconstructive Surgery
,”
J. Med. Syst.
,
35
(
5
), pp.
941
947
.10.1007/s10916-010-9514-z
6.
Harris
,
M. D.
,
Anderson
,
A. E.
,
Henak
,
C. R.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2012
, “
Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips
,”
J. Orthop. Res.
,
30
(
7
), pp.
1133
1139
.10.1002/jor.22040
7.
Lee
,
H.-Y.
,
Kim
,
S.-J.
,
Kang
,
K.-T.
,
Kim
,
S.-H.
, and
Park
,
K.-K.
,
2012
, “
The Effect of Tibial Posterior Slope on Contact Force and Ligaments Stresses in Posterior-Stabilized Total Knee Arthroplasty-Explicit Finite Element Analysis
,”
Knee Surg. Relat. Res.
,
24
(
2
), pp.
91
98
.10.5792/ksrr.2012.24.2.91
8.
Zou
,
Z.
,
Chavez-Arreola
,
A.
,
Mandal
,
P.
,
Board
,
T. N.
, and
Alonso-Rasgado
,
T.
,
2013
, “
Optimization of the Position of the Acetabulum in a Ganz Periacetabular Osteotomy by Finite Element Analysis
,”
J. Orthop. Res.
,
31
(
3
), pp.
472
479
.10.1002/jor.22245
9.
Farrokhi
,
S.
,
Keyak
,
J. H.
, and
Powers
,
C. M.
,
2011
, “
Individuals With Patellofemoral Pain Exhibit Greater Patellofemoral Joint Stress: A Finite Element Analysis Study
,”
Osteoarthrit. Cartilage
,
19
(
3
), pp.
287
294
.10.1016/j.joca.2010.12.001
10.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
, and
Rullkoetter
,
P. J.
,
2010
, “
Computationally Efficient Finite Element Evaluation of Natural Patellofemoral Mechanics
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121013
.10.1115/1.4002854
11.
Yang
,
N. H.
,
Canavan
,
P. K.
,
Nayeb-Hashemi
,
H.
,
Najafi
,
B.
, and
Vaziri
,
A.
,
2010
, “
Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint
,”
Comput. Meth. Biomech. Biomed. Eng.
,
13
(
5
), pp.
589
603
.10.1080/10255840903389989
12.
Carrigan
,
S. D.
,
Whiteside
,
R. A.
,
Pichora
,
D. R.
, and
Small
,
C. F.
,
2003
, “
Development of a Three-Dimensional Finite Element Model for Carpal Load Transmission in a Static Neutral Posture
,”
Ann. Biomed. Eng.
,
31
(
6
), pp.
718
725
.10.1114/1.1574027
13.
Ledoux
,
P.
,
Lamblin
,
D.
, and
Targowski
,
R.
,
2001
, “
Modifications to the Mechanical Behavior of the Wrist After Fracture of the Scaphoid. Modeling by Finite Element Analysis
,”
Acta Orthop. Belg.
,
67
(
3
), pp.
236
241
. Available at: http://www.actaorthopaedica.be/acta/article.asp?lang=en&navid=244&id=659&mod=Acta and the full manuscript is freely viewable: http://www.actaorthopaedica.be/acta/download/2001-3/06-ledoux-targowski-.pdf
14.
Majima
,
M.
,
Horii
,
E.
,
Matsuki
,
H.
,
Hirata
,
H.
, and
Genda
,
E.
,
2008
, “
Load Transmission Through the Wrist in the Extended Position
,”
J. Hand Surg. Am.
,
33
(
2
), pp.
182
188
.10.1016/j.jhsa.2007.10.018
15.
Matsuki
,
H.
,
Horii
,
E.
,
Majima
,
M.
,
Genda
,
E.
,
Koh
,
S.
, and
Hirata
,
H.
,
2009
, “
Scaphoid Nonunion and Distal Fragment Resection: Analysis With Three-Dimensional Rigid Body Spring Model
,”
J. Orthop. Sci.
,
14
(
2
), pp.
144
149
.10.1007/s00776-008-1310-y
16.
Schuind
,
F.
,
Cooney
,
W. P.
,
Linscheid
,
R. L.
,
An
,
K. N.
, and
Chao
,
E. Y. S.
,
1995
, “
Force and Pressure Transmission Through the Normal Wrist. A Theoretical Two-Dimensional Study in the Posteroanterior Plane
,”
J. Biomech.
,
28
(
5
), pp.
587
601
.10.1016/0021-9290(94)00093-J
17.
Pillai
,
R. R.
,
Thoomukuntla
,
B.
,
Ateshian
,
G. A.
, and
Fischer
,
K. J.
,
2007
, “
MRI-Based Modeling for Evaluation of In Vivo Contact Mechanics in the Human Wrist During Active Light Grasp
,”
J. Biomech.
,
40
(
12
), pp.
2781
2787
.10.1016/j.jbiomech.2006.12.019
18.
Cohen
,
Z. A.
,
Henry
,
J. H.
,
McCarthy
,
D. M.
,
Mow
, V
. C.
, and
Ateshian
,
G. A.
,
2003
, “
Computer Simulations of Patellofemoral Joint Surgery
,”
Am. J. Sports Med.
,
31
(
1
), pp.
87
98
. Available at: http://ajs.sagepub.com/content/31/1/87.abstract
19.
Murase
,
T.
,
Moritomo
,
H.
,
Goto
,
A.
,
Sugamoto
,
K.
, and
Yoshikawa
,
H.
,
2005
, “
Does Three-Dimensional Computer Simulation Improve Results of Scaphoid Nonunion Surgery?
,”
Clin. Orthop. Relat. Res.
,
434
, pp.
143
150
.10.1097/01.blo.0000154204.72825.a5
20.
Fernandez
,
J. W.
, and
Pandy
,
M. G.
,
2006
, “
Integrating Modelling and Experiments to Assess Dynamic Musculoskeletal Function in Humans
,”
Exp. Physiol.
,
91
(
2
), pp.
371
382
.10.1113/expphysiol.2005.031047
21.
Henak
,
C. R.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2013
, “
Subject-Specific Analysis of Joint Contact Mechanics: Application to the Study of Osteoarthritis and Surgical Planning
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021003
.10.1115/1.4023386
22.
Clarke
,
S. G.
,
Phillips
,
A. T.
, and
Bull
,
A. M.
,
2011
, “
Evaluating a Suitable Level of Model Complexity for Finite Element Analysis of the Intact Acetabulum
,”
Comput. Meth. Biomech. Biomed. Eng.
,
16
(
7
), pp.
717
724
.10.1080/10255842.2011.633906
23.
Johnson
,
J. E.
,
McIff
,
T. E.
,
Lee
,
P.
,
Toby
,
E. B.
, and
Fischer
,
K. J.
,
2012
, “
Validation of Radiocarpal Joint Contact Models Based on Images From a Clinical MRI Scanner
,”
Comput. Meth. Biomech. Biomed. Eng.
,
17
(
4
), pp.
378
387
.10.1080/10255842.2012.684446
24.
Kwak
,
S. D.
,
Blankevoort
,
L.
, and
Ateshian
,
G. A.
,
2000
, “
A Mathematical Formulation for 3d Quasi-Static Multibody Models of Diarthrodial Joints
,”
Comput. Meth. Biomech. Biomed. Eng.
,
3
(
1
), pp.
41
64
.10.1080/10255840008915253
25.
Crisco
,
J. J.
,
Wolfe
,
S. W.
,
Neu
,
C. P.
, and
Pike
,
S.
,
2001
, “
Advances in the In Vivo Measurement of Normal and Abnormal Carpal Kinematics
,”
Orth. Clin. N. Amer.
,
32
(
2
), pp.
219
231
.10.1016/S0030-5898(05)70244-3
26.
Sokolow
,
C.
, and
Saffar
,
P.
,
2001
, “
Anatomy and Histology of the Scapholunate Ligament
,”
Hand Clin.
,
17
(
1
), pp.
77–81
.
27.
Ruby
,
L. K.
,
An
,
K. N.
,
Linscheid
,
R. L.
,
Cooney
,
W. P.
, 3rd
, and
Chao
,
E. Y.
,
1987
, “
The Effect of Scapholunate Ligament Section on Scapholunate Motion
,”
J. Hand Surg. Am.
,
12
(
5 Pt 1
), pp.
767
771
.10.1016/S0363-5023(87)80065-5
28.
Watson
,
H. K.
, and
Ryu
,
J.
,
1986
, “
Evolution of Arthritis of the Wrist
,”
Clin. Orthop. Relat. Res.
, (
202
), pp.
57
67
.
29.
Johnson
,
J. E.
,
Lee
,
P.
,
McIff
,
T. E.
,
Toby
,
E. B.
, and
Fischer
,
K. J.
,
2013
, “
Scapholunate Ligament Injury Adversely Alters In Vivo Wrist Joint Mechanics. An MRI-Based Modeling Study
,”
J. Orthop. Res.
31
(
9
), pp.
1455–1460
.10.1002/jor.22365
30.
Johnson
,
J. E.
,
Lee
,
P.
,
McIff
,
T. E.
,
Toby
,
E. B.
, and
Fischer
,
K. J.
,
2013
, “
Effectiveness of Surgical Reconstruction to Restore Radiocarpal Joint Mechanics After Scapholunate Ligament Injury: An In Vivo Modeling Study
,”
J. Biomech.
,
46
(
9
), pp.
1548–1553
.10.1016/j.jbiomech.2013.03.020
31.
Boschetti
,
F.
,
Pennati
,
G.
,
Gervaso
,
F.
,
Peretti
,
G. M.
, and
Dubini
,
G.
,
2004
, “
Biomechanical Properties of Human Articular Cartilage Under Compressive Loads
,”
Biorheology
,
41
(
3–4
), pp.
159
166
. Available at: http://iospress.metapress.com/content/wnf9rl4ar67q8pcq/?p=1b53a94d0dc841abbb5f23ef609020c3&pi=2
32.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2002
, “
Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation
,”
J. Biomech.
,
35
(
7
), pp.
903
909
.10.1016/S0021-9290(02)00052-0
33.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
(
3
), pp.
235
241
.10.1016/S0021-9290(96)00133-9
34.
Andriacchi
,
T. P.
,
Mündermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
35.
Patterson
,
R.
, and
Viegas
,
S. F.
,
1995
, “
Biomechanics of the Wrist
,”
J. Hand Ther.
,
8
(
2
), pp.
97
105
.10.1016/S0894-1130(12)80306-1
36.
Hara
,
T.
,
Horii
,
E.
,
An
,
K. N.
,
Cooney
,
W. P.
,
Linscheid
,
R. L.
, and
Chao
,
E. Y.
,
1992
, “
Force Distribution Across Wrist Joint: Application of Pressure-Sensitive Conductive Rubber
,”
J. Hand Surg. Am.
,
17
(
2
), pp.
339
347
.10.1016/0363-5023(92)90417-N
37.
Manuel
,
J.
, and
Moran
,
S. L.
,
2010
, “
The Diagnosis and Treatment of Scapholunate Instability
,”
Hand Clin.
,
26
(
1
), pp.
129
144
.10.1016/j.hcl.2009.08.006
38.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip
,”
J. Biomech.
,
43
(
7
), pp.
1351
1357
.10.1016/j.jbiomech.2010.01.010
39.
Fisk
,
G. R.
,
1980
, “
An Overview of Injuries of the Wrist
,”
Clin. Orthop. Relat. Res.
, (
149
), pp.
137
144
.
40.
Herrera
,
A.
,
Ibarz
,
E.
,
Cegonino
,
J.
,
Lobo-Escolar
,
A.
,
Puertolas
,
S.
,
Lopez
,
E.
,
Mateo
,
J.
, and
Gracia
,
L.
,
2012
, “
Applications of Finite Element Simulation in Orthopedic and Trauma Surgery
,”
World J. Orthop.
,
3
(
4
), pp.
25
41
.10.5312/wjo.v3.i4.25
41.
Eckstein
,
F.
,
Cicuttini
,
F.
,
Raynauld
,
J. P.
,
Waterton
,
J. C.
, and
Peterfy
,
C.
,
2006
, “
Magnetic Resonance Imaging (MRI) of Articular Cartilage in Knee Osteoarthritis (OA): Morphological Assessment
,”
Osteoarthrit. Cartilage
,
14
(
Supplement 1
), pp.
46
75
.10.1016/j.joca.2006.02.026
42.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
ASME J. Biomech. Eng.
,
123
(
4
), pp.
341
346
.10.1115/1.1385841
43.
Gardner
,
M. J.
,
Crisco
,
J. J.
, and
Wolfe
,
S. W.
,
2006
, “
Carpal Kinematics
,”
Hand Clin.
,
22
(
4
), pp.
413
420
.10.1016/j.hcl.2006.08.001
44.
Moojen
,
T. M.
,
Snel
,
J. G.
,
Ritt
,
M. J. P. F.
,
Venema
,
H. W.
,
Kauer
,
J. M. G.
, and
Bos
,
K. E.
,
2003
, “
In Vivo Analysis of Carpal Kinematics and Comparative Review of the Literature
,”
J. Hand Surg.
,
28
(
1
), pp.
81
87
.10.1053/jhsu.2003.50009
45.
Fischer
,
K. J.
,
Johnson
,
J. E.
,
Waller
,
A. J.
,
McIff
,
T. E.
,
Bruce Toby
,
E.
, and
Bilgen
,
M.
,
2011
, “
MRI-Based Modeling for Radiocarpal Joint Mechanics: Validation Criteria and Results for Four Specimen-Specific Models
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101004
.10.1115/1.4005171
You do not currently have access to this content.