In pulmonary hypertension (PH) diagnosis and management, many useful functional markers have been proposed that are unfeasible for clinical implementation. For example, assessing right ventricular (RV) contractile response to a gradual increase in pulmonary arterial (PA) impedance requires simultaneously recording RV pressure and volume, and under different afterload/preload conditions. In addition to clinical applications, many research projects are hampered by limited retrospective clinical data and could greatly benefit from simulations that extrapolate unavailable hemodynamics. The objective of this study was to develop and validate a 0D computational model, along with a numerical implementation protocol, of the RV–PA axis. Model results are qualitatively compared with published clinical data and quantitatively validated against right heart catheterization (RHC) for 115 pediatric PH patients. The RV–PA circuit is represented using a general elastance function for the RV and a three-element Windkessel initial value problem for the PA. The circuit mathematically sits between two reservoirs of constant pressure, which represent the right and left atriums. We compared Pmax, Pmin, mPAP, cardiac output (CO), and stroke volume (SV) between the model and RHC. The model predicted between 96% and 98% of the variability in pressure and 98–99% in volumetric characteristics (CO and SV). However, Bland Altman plots showed the model to have a consistent bias for most pressure and volumetric parameters, and differences between model and RHC to have considerable error. Future studies will address this issue and compare specific waveforms, but these initial results are extremely promising as preliminary proof of concept of the modeling approach.

References

1.
Kass
,
D. A.
, and
Kelly
,
R. P.
,
1992
, “
Ventriculo-Arterial Coupling: Concepts, Assumptions, and Applications
,”
Ann. Biomed. Eng.
,
20
(
1
), pp.
41
62
.
2.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2011
, “
Pulmonary Vascular Wall Stiffness: An Important Contributor to the Increased Right Ventricular Afterload With Pulmonary Hypertension
,”
Pulm. Circ.
,
1
(
2
), pp.
212
223
.
3.
Fourie
,
P. R.
,
Coetzee
,
A. R.
, and
Bolliger
,
C. T.
,
1992
, “
Pulmonary Artery Compliance: Its Role in Right Ventricular-Arterial Coupling
,”
Cardiovasc. Res.
,
26
(
9
), pp.
839
844
.
4.
Wesseling
,
K. H.
,
Jansen
,
J. R.
,
Settels
,
J. J.
, and
Schreuder
,
J. J.
,
1993
, “
Computation of Aortic Flow From Pressure in Humans Using a Nonlinear, Three-Element Model
,”
J. Appl. Physiol.
,
74
(
5
), pp.
2566
2573
.
5.
Lankhaar
,
J. W.
,
Rovekamp
,
F. A.
,
Steendijk
,
P.
,
Faes
,
T. J.
,
Westerhof
,
B. E.
,
Kind
,
T.
,
Vonk-Noordegraaf
,
A.
, and
Westerhof
,
N.
,
2009
, “
Modeling the Instantaneous Pressure-Volume Relation of the Left Ventricle: A Comparison of Six Models
,”
Ann. Biomed. Eng.
,
37
(
9
), pp.
1710
1726
.
6.
Kind
,
T.
,
Faes
,
T. J.
,
Vonk-Noordegraaf
,
A.
, and
Westerhof
,
N.
,
2011
, “
Proportional Relations Between Systolic, Diastolic and Mean Pulmonary Artery Pressure are Explained by Vascular Properties
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
15
23
.
7.
Lanzarone
,
E.
, and
Ruggeri
,
F.
,
2013
, “
Inertance Estimation in a Lumped-Parameter Hydraulic Simulator of Human Circulation
,”
ASME J. Biomech. Eng.
,
135
(
6
), pp.
61012
61017
.
8.
Lankhaar
,
J. W.
,
Westerhof
,
N.
,
Faes
,
T. J.
,
Marques
,
K. M.
,
Marcus
,
J. T.
,
Postmus
,
P. E.
, and
Vonk-Noordegraaf
,
A.
,
2006
, “
Quantification of Right Ventricular Afterload in Patients With and Without Pulmonary Hypertension
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
291
(
4
), pp.
H1731
1737
.
9.
Burkhoff
,
D.
,
Alexander
,
J.
, Jr.
, and
Schipke
,
J.
,
1988
, “
Assessment of Windkessel as a Model of Aortic Input Impedance
,”
Am. J. Physiol.
,
255
(
4 Pt 2
), pp.
H742
753
.
10.
Nichols
,
W. W.
,
Nichols
,
W. W.
, and
McDonald
,
D. A.
,
2011
,
McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles
,
Hodder Arnold
,
London
.
11.
Zamir
,
M.
,
2005
,
The Physics of Coronary Blood Flow
,
Springer
,
New York
.
12.
Tian
,
L.
,
Hunter
,
K. S.
,
Kirby
,
K. S.
,
Ivy
,
D. D.
, and
Shandas
,
R.
,
2010
, “
Measurement Uncertainty in Pulmonary Vascular Input Impedance and Characteristic Impedance Estimated From Pulsed-Wave Doppler Ultrasound and Pressure: Clinical Studies on 57 Pediatric Patients
,”
Physiol. Meas.
,
31
(
6
), pp.
729
748
.
13.
Reiter
,
G.
,
Reiter
,
U.
,
Kovacs
,
G.
,
Kainz
,
B.
,
Schmidt
,
K.
,
Maier
,
R.
,
Olschewski
,
H.
, and
Rienmueller
,
R.
,
2008
, “
Magnetic Resonance-Derived 3-Dimensional Blood Flow Patterns in the Main Pulmonary Artery as a Marker of Pulmonary Hypertension and a Measure of Elevated Mean Pulmonary Arterial Pressure
,”
Circ. Cardiovasc. Imaging
,
1
(
1
), pp.
23
30
.
14.
Bachler
,
P.
,
Pinochet
,
N.
,
Sotelo
,
J.
,
Crelier
,
G.
,
Irarrazaval
,
P.
,
Tejos
,
C.
, and
Uribe
,
S.
,
2013
, “
Assessment of Normal Flow Patterns in the Pulmonary Circulation by Using 4D Magnetic Resonance Velocity Mapping
,”
Magn. Reson. Imaging
,
31
(
2
), pp.
178
188
.
15.
Parlikar
,
T. A.
,
2007
, “
Modeling and Monitoring of Cardiovascular Dynamics for Patients in Critical Care
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Boston, MA
.
16.
Kung
,
E.
, and
Taylor
,
C.
,
2011
, “
Development of a Physical Windkessel Module to Re-Create in vivo Vascular Flow Impedance for in vitro Experiments
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
2
14
.
17.
Stevenson
,
D.
,
Revie
,
J.
,
Chase
,
J. G.
,
Hann
,
C. E.
,
Shaw
,
G. M.
,
Lambermont
,
B.
,
Ghuysen
,
A.
,
Kolh
,
P.
, and
Desaive
,
T.
,
2012
, “
Beat-to-Beat Estimation of the Continuous Left and Right Cardiac Elastance From Metrics Commonly Available in Clinical Settings
,”
Biomed. Eng. Online
,
11
(
1
), p.
73
.
18.
Haddad
,
F.
,
Hunt
,
S. A.
,
Rosenthal
,
D. N.
, and
Murphy
,
D. J.
,
2008
, “
Right Ventricular Function in Cardiovascular Disease, Part I: Anatomy, Physiology, Aging, and Functional Assessment of the Right Ventricle
,”
Circulation
,
117
(
11
), pp.
1436
1448
.
19.
Bellofiore
,
A.
, and
Chesler
,
N. C.
,
2013
, “
Methods for Measuring Right Ventricular Function and Hemodynamic Coupling With the Pulmonary Vasculature
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1384
1398
.
20.
Mukkamala
,
R.
,
2000
, “
A Forward Model-Based Analysis of Cardiovascular System Identification Methods
,”
Ph.D. thesis
, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA.
21.
Marak
,
K. P.
,
2013
, “
The Time Varying Elastance Model Used as a Boundary Condition in Arterial Network Simulations
,”
Master's thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
22.
Chuang
,
P. P.
,
Wilson
,
R. F.
,
Homans
,
D. C.
,
Stone
,
K.
,
Bergman
,
T.
,
Bennett
,
T. D.
, and
Kubo
,
S. H.
,
1996
, “
Measurement of Pulmonary Artery Diastolic Pressure From a Right Ventricular Pressure Transducer in Patients With Heart Failure
,”
J. Card. Failure
,
2
(
1
), pp.
41
46
.
23.
Graham
,
T. P.
, Jr.
,
Jarmakani
,
J. M.
,
Atwood
,
G. F.
, and
Canent
,
R. V.
, Jr.
,
1973
, “
Right Ventricular Volume Determinations in Children. Normal Values and Observations With Volume or Pressure Overload
,”
Circulation
,
47
(
1
), pp.
144
153
.
24.
Horsfield
,
K.
, and
Woldenberg
,
M. J.
,
1989
, “
Diameters and Cross-Sectional Areas of Branches in the Human Pulmonary Arterial Tree
,”
Anat. Rec.
,
223
(
3
), pp.
245
251
.
25.
Akay
,
H. O.
,
Ozmen
,
C. A.
,
Bayrak
,
A. H.
,
Senturk
,
S.
,
Katar
,
S.
,
Nazaroglu
,
H.
, and
Taskesen
,
M.
,
2009
, “
Diameters of Normal Thoracic Vascular Structures in Pediatric Patients
,”
Surg. Radiol. Anat.: SRA
,
31
(
10
), pp.
801
807
.
26.
Westerhof
,
N.
,
Stergiopulos
,
N.
, and
Noble
,
M. I.
,
2010
,
Snapshots of Hemodynamics—An Aid for Clinical Research and Graduate Education
,
Springer
,
New York
.
27.
Muthurangu
,
V.
,
Atkinson
,
D.
,
Sermesant
,
M.
,
Miquel
,
M. E.
,
Hegde
,
S.
,
Johnson
,
R.
,
Andriantsimiavona
,
R.
,
Taylor
,
A. M.
,
Baker
,
E.
,
Tulloh
,
R.
,
Hill
,
D.
, and
Razavi
,
R. S.
,
2005
, “
Measurement of Total Pulmonary Arterial Compliance Using Invasive Pressure Monitoring and MR Flow Quantification During MR-Guided Cardiac Catheterization
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
289
(
3
), pp.
H1301
1306
.
28.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.
29.
Hunter
,
K. S.
,
Lee
,
P. F.
,
Lanning
,
C. J.
,
Ivy
,
D. D.
,
Kirby
,
K. S.
,
Claussen
,
L. R.
,
Chan
,
K. C.
, and
Shandas
,
R.
,
2008
, “
Pulmonary Vascular Input Impedance is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better Than Pulmonary Vascular Resistance Alone in Pediatric Patients With Pulmonary Hypertension
,”
Am. Heart J.
,
155
(
1
), pp.
166
174
.
30.
Spilker
,
R. L.
,
Feinstein
,
J. A.
,
Parker
,
D. W.
,
Reddy
, V
. M.
, and
Taylor
,
C. A.
,
2007
, “
Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
546
559
.
31.
Brimioulle
,
S.
,
Wauthy
,
P.
,
Ewalenko
,
P.
,
Rondelet
,
B.
,
Vermeulen
,
F.
,
Kerbaul
,
F.
, and
Naeije
,
R.
,
2003
, “
Single-Beat Estimation of Right Ventricular End-Systolic Pressure-Volume Relationship
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
284
(
5
), pp.
H1625
1630
.
32.
Aguero
,
J.
,
Ishikawa
,
K.
,
Hadri
,
L.
,
Santos-Gallego
,
C.
,
Fish
,
K.
,
Hammoudi
,
N.
,
Chaanine
,
A.
,
Torquato
,
S.
,
Naim
,
C.
,
Ibanez
,
B.
,
Pereda
,
D.
,
Garcia-Alvarez
,
A.
,
Fuster
,
V.
,
Sengupta
,
P. P.
,
Leopold
,
J. A.
, and
Hajjar
,
R. J.
,
2014
, “
Characterization of Right Ventricular Remodeling and Failure in a Chronic Pulmonary Hypertension Model
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
307
(
8
), pp.
H1204
1215
.
33.
Champion
,
H. C.
,
Michelakis
,
E. D.
, and
Hassoun
,
P. M.
,
2009
, “
Comprehensive Invasive and Noninvasive Approach to the Right Ventricle-Pulmonary Circulation Unit: State of the Art and Clinical and Research Implications
,”
Circulation
,
120
(
11
), pp.
992
1007
.
34.
Gehalot
,
P.
,
Zhang
,
R.
,
Mathew
,
A.
, and
Behbehani
,
K.
,
2006
, “
Efficacy of Using Mean Arterial Blood Pressure Sequence for Three-Element Windkessel Model Estimation
,” 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBS '06
), New York, Aug. 30-Sept. 3, pp.
1379
1382
.
35.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
.
You do not currently have access to this content.