Abstract

The management of thoracolumbar (TL) burst fractures remained challenging. Due to the complex nature of the fractured vertebrae and the lack of clinical and biomechanical evidence, currently, there was still no guideline to select the optimal posterior fixation strategy for TL burst fracture. We utilized a T10-L3 TL finite element model to simulate L1 burst fracture and four surgical constructs with one- or two-level suprajacent and infrajacent instrumentation (U1L1, U1L2, U2L1, and U2L2). This study was aimed to compare the biomechanical properties and find an optimal fixation strategy for TL burst fracture in order to minimize motion in the fractured level without exerting significant burden in the construct. Our result showed that two-level infrajacent fixation (U1L2 and U2L2) resulted in greater global motion reduction ranging from 66.0 to 87.3% compared to 32.0 to 47.3% in one-level infrajacent fixation (U1L1 and U2L1). Flexion produced the largest pathological motion in the fractured level but the differences between the constructs were small, all within 0.26 deg. Comparisons in implant stress showed that U2L1 and U2L2 had an average 25.3 and 24.8% less von Mises stress in the pedicle screws compared to U1L1 and U1L2, respectively. The construct of U2L1 had better preservation of the physiological spinal motion while providing sufficient range of motion reduction at the fractured level. We suggested that U2L1 is a good alternative to the standard long-segment fixation with better preservation of physiological motion and without an increased risk of implant failure.

References

1.
Alpantaki
,
K.
,
Bano
,
A.
,
Pasku
,
D.
,
Mavrogenis
,
A. F.
,
Papagelopoulos
,
P. J.
,
Sapkas
,
G. S.
,
Korres
,
D. S.
, and
Katonis
,
P.
,
2010
, “
Thoracolumbar Burst Fractures: A Systematic Review of Management
,”
Orthopedics
,
33
(
6
), pp.
422
429
.10.3928/01477447-20100429-24
2.
Dai
,
L.-Y.
,
Jiang
,
S.-D.
,
Wang
,
X.-Y.
, and
Jiang
,
L.-S.
,
2007
, “
A Review of the Management of Thoracolumbar Burst Fractures
,”
Surg. Neurol.
,
67
(
3
), pp.
221
231
(discussion 231).10.1016/j.surneu.2006.08.081
3.
Tang
,
P.
,
Long
,
A.
,
Shi
,
T.
,
Zhang
,
L.
, and
Zhang
,
L.
,
2016
, “
Analysis of the Independent Risk Factors of Neurologic Deficit After Thoracolumbar Burst Fracture
,”
J. Orthop. Surg. Res.
,
11
(
1
), p.
128
.10.1186/s13018-016-0448-0
4.
Denis
,
F.
,
1983
, “
The Three Column Spine and Its Significance in the Classification of Acute Thoracolumbar Spinal Injuries
,”
Spine
,
8
(
8
), pp.
817
831
.10.1097/00007632-198311000-00003
5.
Holmes
,
J. F.
,
Miller
,
P. Q.
,
Panacek
,
E. A.
,
Lin
,
S.
,
Horne
,
N. S.
, and
Mower
,
W. R.
,
2001
, “
Epidemiology of Thoracolumbar Spine Injury in Blunt Trauma
,”
Acad. Emerg. Med.
,
8
(
9
), pp.
866
872
.10.1111/j.1553-2712.2001.tb01146.x
6.
Petersilge
,
C. A.
, and
Emery
,
S. E.
,
1996
, “
Thoracolumbar Burst Fracture: Evaluating Stability
,”
Semin. Ultrasound, CT, MR
,
17
(
2
), pp.
105
113
.10.1016/S0887-2171(96)90010-4
7.
Rajasekaran
,
S.
,
2010
, “
Thoracolumbar Burst Fractures Without Neurological Deficit: The Role for Conservative Treatment
,”
Eur. Spine J.
, 19(Suppl 1), pp.
S40
S47
.10.1007/s00586-009-1122-6
8.
Denis
,
F.
,
Armstrong
,
G. W.
,
Searls
,
K.
, and
Matta
,
L.
,
1984
, “
Acute Thoracolumbar Burst Fractures in the Absence of Neurologic Deficit. A Comparison Between Operative and Nonoperative Treatment
,”
Clin. Orthop. Relat. Res.
,
189
, pp.
142
149
. https://journals.lww.com/clinorthop/Abstract/1984/10000/Acute_Thoracolumbar_Burst_Fractures_in_the_Absence.15.aspx
9.
Mumford
,
J.
,
Weinstein
,
J. N.
,
Spratt
,
K. F.
, and
Goel
,
V. K.
,
1993
, “
Thoracolumbar Burst Fractures. The Clinical Efficacy and Outcome of Nonoperative Management
,”
Spine
,
18
(
8
), pp.
955
970
.10.1097/00007632-199306150-00003
10.
Khattak
,
M. J.
,
Syed
,
S.
, and
Lakdawala
,
R. H.
,
2010
, “
Operative Management of Unstable Thoracolumbar Burst Fractures
,”
J. Coll. Phys. Surg.
,
20
(
5
), pp.
347
349
.https://pubmed.ncbi.nlm.nih.gov/20642934/
11.
Wood
,
K. B.
,
Li
,
W.
,
Lebl
,
D. R.
,
Lebl
,
D. S.
, and
Ploumis
,
A.
,
2014
, “
Management of Thoracolumbar Spine Fractures
,”
Spine J.
,
14
(
1
), pp.
145
164
.10.1016/j.spinee.2012.10.041
12.
Been
,
H. D.
, and
Bouma
,
G. J.
,
1999
, “
Comparison of Two Types of Surgery for Thoraco-Lumbar Burst Fractures: Combined Anterior and Posterior Stabilisation vs. Posterior Instrumentation Only
,”
Acta Neurochir.
,
141
(
4
), pp.
349
357
.10.1007/s007010050310
13.
Defino
,
H. L. A.
, and
Canto
,
F. R. T.
,
2007
, “
Low Thoracic and Lumbar Burst Fractures: Radiographic and Functional Outcomes
,”
Eur. Spine J.
,
16
(
11
), pp.
1934
1943
.10.1007/s00586-007-0406-y
14.
McLain
,
R. F.
,
2006
, “
The Biomechanics of Long Versus Short Fixation for Thoracolumbar Spine Fractures
,”
Spine
,
31
(
11 Suppl
), pp.
S70
S79
(discussion S104).10.1097/01.brs.0000218221.47230.dd
15.
Basaran
,
R.
,
Efendioglu
,
M.
,
Kaksi
,
M.
,
Celik
,
T.
,
Mutlu
,
İ.
, and
Ucar
,
M.
,
2019
, “
Finite Element Analysis of Short Versus Long Segment Posterior Fixation for Thoracolumbar Burst Fracture
,”
World Neurosurg.
,
128
, pp.
e1109
e1117
.10.1016/j.wneu.2019.05.077
16.
Chen
,
H.
,
Zhou
,
X.
,
Fujita
,
H.
,
Onozuka
,
M.
, and
Kubo
,
K. Y.
,
2013
, “
Age-Related Changes in Trabecular and Cortical Bone Microstructure
,”
Int. J. Endocrinol.
,
2013
, pp.
1
9
.10.1155/2013/213234
17.
Palepu
,
V.
,
Rayaprolu
,
S. D.
, and
Nagaraja
,
S.
,
2019
, “
Differences in Trabecular Bone, Cortical Shell, and Endplate Microstructure Across the Lumbar Spine
,”
Int. J. Spine Surg.
,
13
(
4
), pp.
361
370
.10.14444/6049
18.
Zehra
,
U.
,
Brown
,
K. R.
,
Adams
,
M. A.
, and
Dolan
,
P.
,
2015
, “
Porosity and Thickness of the Vertebral Endplate Depend on Local Mechanical Loading
,”
Spine
,
40
(
15
), pp.
1173
1180
.10.1097/BRS.0000000000000925
19.
Newell
,
N.
,
Little
,
J. P.
,
Christou
,
A.
,
Adams
,
M. A.
,
Adam
,
C. J.
, and
Masouros
,
S. D.
,
2017
, “
Biomechanics of the Human Intervertebral Disc: A Review of Testing Techniques and Results
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
420
434
.10.1016/j.jmbbm.2017.01.037
20.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
,
1996
, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
,
21
(
15
), pp.
1824
1834
.10.1097/00007632-199608010-00022
21.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clin. Biomech.
,
14
(
1
), pp.
41
53
.10.1016/S0268-0033(98)00036-9
22.
Wong
,
C.
,
Hu
,
H.
,
Hsieh
,
M.
, and
Huang
,
K.
,
2020
, “
Optimization of Three-Level Cervical Hybrid Surgery to Prevent Adjacent Segment Disease: A Finite Element Study
,”
Front. Bioeng. Biotechnol.
,
8
(
154
), p. 154.10.3389/fbioe.2020.00154
23.
Hsieh
,
Y. Y.
,
Kuo
,
Y. J.
,
Chen
,
C. H.
,
Wu
,
L. C.
,
Chiang
,
C. J.
, and
Lin
,
C. L.
,
2020
, “
Biomechanical Assessment of Vertebroplasty Combined With Cement-Augmented Screw Fixation for Lumbar Burst Fractures: A Finite Element Analysis
,”
Appl. Sci.
,
10
(
6
), pp.
1
14
.10.3390/app10062133
24.
Mirza
,
S. K.
,
Mirza
,
A. J.
,
Chapman
,
J. R.
, and
Anderson
,
P. A.
,
2002
, “
Classifications of Thoracic and Lumbar Fractures: Rationale and Supporting Data
,”
J. Am. Acad. Orthop. Surg.
,
10
(
5
), pp.
364
377
.10.5435/00124635-200209000-00008
25.
Oda
,
I.
,
Cunningham
,
B. W.
,
Lee
,
G. A.
,
Abumi
,
K.
,
Kaneda
,
K.
, and
McAfee
,
P. C.
,
2000
, “
Biomechanical Properties of Anterior Thoracolumbar Multisegmental Fixation: An Analysis of Construct Stiffness and Screw-Rod Strain
,”
Spine
,
25
(
18
), pp.
2303
2311
.10.1097/00007632-200009150-00007
26.
Bishop
,
F. S.
,
Samuelson
,
M. M.
,
Finn
,
M. A.
,
Bachus
,
K. N.
,
Brodke
,
D. S.
, and
Schmidt
,
M. H.
,
2010
, “
The Biomechanical Contribution of Varying Posterior Constructs Following Anterior Thoracolumbar Corpectomy and Reconstruction
,”
J. Neurosurg. Spine
,
13
(
2
), pp.
234
239
.10.3171/2010.3.SPINE09267
27.
Hitchon
,
P. W.
,
Goel
,
V. K.
,
Rogge
,
T. N.
,
Torner
,
J. C.
,
Dooris
,
A. P.
,
Drake
,
J. S.
,
Yang
,
S. J.
, and
Totoribe
,
K.
,
2000
, “
In Vitro Biomechanical Analysis of Three Anterior Thoracolumbar Implants
,”
J. Neurosurg. Spine
,
93
(
2
), pp.
252
258
.10.3171/spi.2000.93.2.0252
28.
Moon
,
S.-M.
,
Ingalhalikar
,
A.
,
Highsmith
,
J. M.
, and
Vaccaro
,
A. R.
,
2009
, “
Biomechanical Rigidity of an All-Polyetheretherketone Anterior Thoracolumbar Spinal Reconstruction Construct: An In Vitro Corpectomy Model
,”
Spine J.
,
9
(
4
), pp.
330
335
.10.1016/j.spinee.2008.11.012
29.
McDonnell
,
M.
,
Shah
,
K. N.
,
Paller
,
D. J.
,
Thakur
,
N. A.
,
Koruprolu
,
S.
,
Palumbo
,
M. A.
, and
Daniels
,
A. H.
,
2016
, “
Biomechanical Analysis of Pedicle Screw Fixation for Thoracolumbar Burst Fractures
,”
Orthopedics
,
39
(
3
), pp.
e514
e518
.10.3928/01477447-20160427-09
30.
Grossbach
,
A. J.
,
Viljoen
,
S. V.
,
Hitchon
,
P. W.
,
DeVries Watson
,
N. A.
,
Grosland
,
N. M.
, and
Torner
,
J.
,
2015
, “
Vertebroplasty Plus Short Segment Pedicle Screw Fixation in a Burst Fracture Model in Cadaveric Spines
,”
J. Clin. Neurosci.
,
22
(
5
), pp.
883
888
.10.1016/j.jocn.2014.11.031
31.
Kallemeier
,
P. M.
,
Beaubien
,
B. P.
,
Buttermann
,
G. R.
,
Polga
,
D. J.
, and
Wood
,
K. B.
,
2008
, “
In Vitro Analysis of Anterior and Posterior Fixation in an Experimental Unstable Burst Fracture Model
,”
J. Spinal Disord. Tech.
,
21
(
3
), pp.
216
224
.10.1097/BSD.0b013e31807a2f61
32.
Modi
,
H. N.
,
Chung
,
K. J.
,
Seo
,
I. W.
,
Yoon
,
H. S.
,
Hwang
,
J. H.
,
Kim
,
H. K.
,
Noh
,
K. C.
, and
Yoo
,
J. H.
,
2009
, “
Two Levels Above and One Level Below Pedicle Screw Fixation for the Treatment of Unstable Thoracolumbar Fracture With Partial or Intact Neurology
,”
J. Orthop. Surg. Res.
,
4
(
1
), p.
28
.10.1186/1749-799X-4-28
33.
Altay
,
M.
,
Ozkurt
,
B.
,
Aktekin
,
C. N.
,
Ozturk
,
A. M.
,
Dogan
,
O.
, and
Tabak
,
A. Y.
,
2007
, “
Treatment of Unstable Thoracolumbar Junction Burst Fractures With Short- or Long-Segment Posterior Fixation in Magerl Type a Fractures
,”
Eur. Spine J.
,
16
(
8
), pp.
1145
1155
.10.1007/s00586-007-0310-5
34.
Aly
,
T. A.
,
2017
, “
Short Segment Versus Long Segment Pedicle Screws Fixation in Management of Thoracolumbar Burst Fractures: Meta-Analysis
,”
Asian Spine J.
,
11
(
1
), pp.
150
160
.10.4184/asj.2017.11.1.150
35.
Reid
,
J. J.
,
Johnson
,
J. S.
, and
Wang
,
J. C.
,
2011
, “
Challenges to Bone Formation in Spinal Fusion
,”
J. Biomech.
,
44
(
2
), pp.
213
220
.10.1016/j.jbiomech.2010.10.021
36.
Heggeness
,
M. H.
, and
Esses
,
S. I.
,
1991
, “
Classification of Pseudarthroses of the Lumbar Spine
,”
Spine
,
16
(
8 Suppl
), pp.
S449
S454
.https://pubmed.ncbi.nlm.nih.gov/1785103/#:~:text=The%20pseudarthroses%20were%20found%20to,facet%20joints%20or%20spinal%20hardware.
37.
Ponnappan
,
R. K.
,
Serhan
,
H.
,
Zarda
,
B.
,
Patel
,
R.
,
Albert
,
T.
, and
Vaccaro
,
A. R.
,
2009
, “
Biomechanical Evaluation and Comparison of Polyetheretherketone Rod System to Traditional Titanium Rod Fixation
,”
Spine J.
,
9
(
3
), pp.
263
267
.10.1016/j.spinee.2008.08.002
38.
Cunningham
,
B. W.
,
Kotani
,
Y.
,
McNulty
,
P. S.
,
Cappuccino
,
A.
, and
McAfee
,
P. C.
,
1997
, “
The Effect of Spinal Destabilization and Instrumentation on Lumbar Intradiscal Pressure: An In vitro Biomechanical Analysis
,”
Spine
,
22
(
22
), pp.
2655
2663
.10.1097/00007632-199711150-00014
39.
Doblaré
,
M.
,
Garcı́a
,
J. M.
, and
Gómez
,
M. J.
,
2004
, “
Modelling Bone Tissue Fracture and Healing: A Review
,”
Eng. Fract. Mech.
,
71
, pp.
13
14
.10.1016/j.engfracmech.2003.08.003
40.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
,
1996
, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.10.1016/0021-9290(94)00156-1
41.
Xu
,
B.
,
Tang
,
T.
, and
Yang
,
H.
,
2009
, “
Long-Term Results of Thoracolumbar and Lumbar Burst Fractures After Short-Segment Pedicle Instrumentation, With Special Reference to Implant Failure and Correction Loss
,”
Orthop. Surg.
,
1
(
2
), pp.
85
93
.10.1111/j.1757-7861.2009.00022.x
42.
McLain
,
R. F.
,
Sparling
,
E.
, and
Benson
,
D. R.
,
1993
, “
Early Failure of Short-Segment Pedicle Instrumentation for Thoracolumbar Fractures. A Preliminary Report
,”
J. Bone Jt. surgery. Am.
,
75
(
2
), pp.
162
167
.10.2106/00004623-199302000-00002
43.
Machino
,
M.
,
Yukawa
,
Y.
,
Ito
,
K.
,
Nakashima
,
H.
, and
Kato
,
F.
,
2011
, “
Posterior/Anterior Combined Surgery for Thoracolumbar Burst Fractures–Posterior Instrumentation With Pedicle Screws and Laminar Hooks, Anterior Decompression and Strut Grafting
,”
Spinal Cord
,
49
(
4
), pp.
573
579
.10.1038/sc.2010.159
You do not currently have access to this content.