Abstract

Atherosclerotic plaques can gradually develop in certain arteries. Disruption of fibrous tissue in plaques can result in plaque rupture and thromboembolism, leading to heart attacks and strokes. Collagen fibrils are important tissue building blocks and tissue strength depends on how fibrils are oriented. Fibril orientation in plaque tissue may potentially influence vulnerability to disruption. While X-ray scattering has previously been used to characterize fibril orientations in soft tissues and bones, it has never been used for characterization of human atherosclerotic plaque tissue. This study served to explore fibril orientation in specimens from human plaques using small angle X-ray scattering (SAXS). Plaque tissue was extracted from human femoral and carotid arteries, and each tissue specimen contained a region of calcified material. Three-dimensional (3D) collagen fibril orientation was determined along scan lines that started away from and then extended toward a given calcification. Fibrils were found to be oriented mainly in the circumferential direction of the plaque tissue at the majority of locations away from calcifications. However, in a number of cases, the dominant fibril direction differed near a calcification, changing from circumferential to longitudinal or thickness (radial) directions. Further study is needed to elucidate how these fibril orientations may influence plaque tissue stress–strain behavior and vulnerability to rupture.

References

1.
Mackay
,
J.
, and
Mensah
,
G.
, eds.,
2004
,
Atlas of Heart Disease and Stroke
,
World Health Organization
,
Geneva, Switzerland
.
2.
Simionescu
,
M.
, and
Sima
,
A.
,
2012
, “
Morphology of Atherosclerotic Lesions
,”
Inflammation and Atherosclerosis
,
G.
Wick
and
C.
Grundtman
, eds.,
Springer
,
Vienna, Austria
, pp.
19
37
.
3.
Insull
,
W.
,
2009
, “
The Pathology of Atherosclerosis: Plaque Development and Plaque Response to Medical Treatment
,”
Am. J. Med.
,
122
(
1
), pp.
S3
S14
.10.1016/j.amjmed.2008.10.013
4.
Hutcheson
,
J. D.
,
Goettsch
,
C.
,
Bertazzo
,
S.
,
Maldonado
,
N.
,
Ruiz
,
J. L.
,
Goh
,
W.
,
Yabusaki
,
K.
,
2016
, “
Genesis and Growth of Extracellular-Vesicle-Derived Micro Calcifications in Atherosclerotic Plaques
,”
Nat. Mater.
,
15
(
3
), pp.
335
343
.10.1038/nmat4519
5.
Richardson
,
P.
,
2002
, “
Biomechanics of Plaque Rupture: Progress, Problems and New Frontiers
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
524
536
.10.1114/1.1482781
6.
Carr
,
S.
,
Farb
,
A.
,
Pearce
,
W.
,
Virmani
,
R.
, and
Yao
,
J.
,
1996
, “
Atherosclerotic Plaque Rupture in Symptomatic Carotid Artery Stenosis
,”
J. Vasc. Surg.
,
23
(
5
), pp.
755
766
.10.1016/S0741-5214(96)70237-9
7.
Fratzl
,
P.
,
2008
, “
Collagen: Structure and Mechanics, an Introduction
,”
Collagen Structure and Mechanics
,
P.
Fratzl
, ed.,
Springer
,
New York
, pp.
1
12
.
8.
Chen
,
H.
, and
Kassab
,
G.
,
2016
, “
Microstructure-Based Biomechanics of Coronary Arteries in Health and Disease
,”
J. Biomech.
,
49
(
12
), pp.
2548
2559
.10.1016/j.jbiomech.2016.03.023
9.
Holzapfel
,
G.
,
2008
, “
Collagen in Arterial Walls: Biomechanical Aspects
,”
Collagen Structure and Mechanics
,
P.
Fratzl
, ed.,
Springer
,
New York
, pp.
285
324
.
10.
Whelan
,
A.
,
Duffy
,
J.
,
Gaul
,
R. T.
,
O'Reilly
,
D.
,
Nolan
,
D. R.
,
Gunning
,
P.
,
Lally
,
C.
, and
Murphy
,
B. P.
,
2019
, “
Collagen Fibre Orientation and Dispersion Govern Ultimate Tensile Strength, Stiffness and the Fatigue Performance of Bovine Pericardium
,”
J. Mech. Behav. Biomed. Mater.
,
90
, pp.
54
60
.10.1016/j.jmbbm.2018.09.038
11.
Libby
,
P.
,
2013
, “
Collagenases and Cracks in the Plaque
,”
J. Clin. Invest.
,
123
(
8
), pp.
3201
3203
.10.1172/JCI67526
12.
Adiguzel
,
E.
,
Ahmad
,
P.
,
Franco
,
C.
, and
Bendeck
,
M.
,
2009
, “
Collagens in the Progression and Complications of Atherosclerosis
,”
Vasc. Med.
,
14
(
1
), pp.
73
89
.10.1177/1358863X08094801
13.
Douglas
,
G.
,
Brown
,
A.
,
Gillard
,
J.
,
Bennett
,
M.
,
Sutcliffe
,
M.
, and
Teng
,
Z.
,
2017
, “
Impact of Fiber Structure on the Material Stability and Rupture Mechanisms of Coronary Atherosclerotic Plaque
,”
Ann. Biomed. Eng.
,
45
(
6
), pp.
1462
1474
.10.1007/s10439-017-1827-3
14.
Holzapfel
,
G.
,
Mulvihill
,
J.
,
Cunnane
,
E.
, and
Walsh
,
M.
,
2014
, “
Computational Approaches for Analyzing the Mechanics of Atherosclerotic Plaques: A Review
,”
J. Biomech.
,
47
(
4
), pp.
859
869
.10.1016/j.jbiomech.2014.01.011
15.
Akyildiz
,
A.
,
Speelman
,
L.
,
Nieuwstadt
,
H.
,
van Brummelen
,
H.
,
Virmani
,
R.
,
van der Lugt
,
A.
,
van der Steen
,
A.
,
Wentzel
,
J.
, and
Gijsen
,
F.
,
2016
, “
The Effects of Plaque Morphology and Material Properties on Peak Cap Stress in Human Coronary Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
7
), pp.
771
779
.10.1080/10255842.2015.1062091
16.
Costopoulos
,
C.
,
Huang
,
Y.
,
Brown
,
A.
,
Calvert
,
P.
,
Hoole
,
S.
,
West
,
N.
,
Gillard
,
J.
,
Teng
,
Z.
, and
Bennett
,
M.
,
2017
, “
Plaque Rupture in Coronary Atherosclerosis Is Associated With Increased Plaque Structural Stress
,”
JACC Cardiovasc. Imaging
,
10
(
12
), pp.
1472
1483
.10.1016/j.jcmg.2017.04.017
17.
Noble
,
C.
,
Carlson
,
K.
,
Neumann
,
E.
,
Dragomir-Daescu
,
D.
,
Erdemir
,
A.
,
Lerman
,
A.
, and
Young
,
M.
,
2020
, “
Patient Specific Characterization of Artery and Plaque Material Properties in Peripheral Artery Disease
,”
J. Mech. Behav. Biomed. Mater.
,
101
, p.
103453
.10.1016/j.jmbbm.2019.103453
18.
Nandalur
,
K. R.
,
Baskurt
,
E.
,
Hagspiel
,
K. D.
,
Phillips
,
C. D.
, and
Kramer
,
C. M.
,
2005
, “
Calcified Carotid Atherosclerotic Plaque Is Associated Less With Ischemic Symptoms Than in Noncalcified Plaques on MDCT
,”
Am. J. Roentgenol.
,
184
(
1
), pp.
295
298
.10.2214/ajr.184.1.01840295
19.
Shaalan
,
W. E.
,
Cheng
,
H.
,
Gewertz
,
B.
,
McKinsey
,
J. F.
,
Schwartz
,
L. B.
,
Katz
,
D.
,
Cao
,
D.
,
Desai
,
T.
,
Glagov
,
S.
, and
Bassiouny
,
H. S.
,
2004
, “
Degree of Carotid Plaque Calcification in Relation to Symptomatic Outcome and Plaque Inflammation
,”
J. Vasc. Surg.
,
40
(
2
), pp.
262
269
.10.1016/j.jvs.2004.04.025
20.
Kwee
,
R.
,
2010
, “
Systematic Review on the Association Between Calcification in Carotid Plaques and Clinical Ischemic Symptoms
,”
J. Vasc. Surg.
,
51
(
4
), pp.
1015
1025
.10.1016/j.jvs.2009.08.072
21.
Wahlgren
,
C.
,
Zheng
,
W.
,
Shaalan
,
W.
,
Tang
,
J.
, and
Bassiouny
,
H.
,
2009
, “
Human Carotid Plaque Calcification and Vulnerability
,”
Cerebrovasc. Dis.
,
27
(
2
), pp.
193
200
.10.1159/000189204
22.
Prabhakaran
,
S.
,
Singh
,
R.
,
Zhou
,
X.
,
Ramas
,
R.
,
Sacco
,
R. L.
, and
Rundek
,
T.
,
2007
, “
Presence of Calcified Carotid Plaque Predicts Vascular Events: The Northern Manhattan Study
,”
Atherosclerosis
,
195
(
1
), pp.
e197
e201
.10.1016/j.atherosclerosis.2007.03.044
23.
Kan
,
Y.
,
He
,
W.
,
Ning
,
B.
,
Li
,
H.
,
Wei
,
S.
, and
Yu
,
T.
,
2019
, “
The Correlation Between Calcification in Carotid Plaque and Stroke: Calcification May Be a Risk Factor for Stroke
,”
Int. J. Clin. Exp. Pathol.
,
12
(
3
), pp.
750
758
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945186
24.
Wenk
,
J.
,
Papadopoulos
,
P.
, and
Zohdi
,
T.
,
2010
, “
Numerical Modeling of Stress in Stenotic Arteries With Microcalcifications in a Micromechanical Approximation
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091001.
10.1115/1.4001351
25.
Wong
,
K.
,
Thavornpattanapong
,
P.
,
Cheung
,
S.
,
Sun
,
Z.
, and
Tu
,
J.
,
2012
, “
Effect of Calcification on the Mechanical Stability of Plaque Based on a Three-Dimensional Carotid Bifurcation Model
,”
BMC Cardiovasc. Disord.
,
12
, p.
7
.10.1186/1471-2261-12-7
26.
Kelly-Arnold
,
A.
,
Maldonado
,
N.
,
Laudier
,
D.
,
Aikawa
,
E.
,
Cardoso
,
L.
, and
Weinbaum
,
S.
,
2013
, “
Revised Microcalcification Hypothesis for Fibrous Cap Rupture in Human Coronary Arteries
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
26
), pp.
10741
10746
.10.1073/pnas.1308814110
27.
Barrett
,
H.
,
Van der Heiden
,
K.
,
Farrell
,
E.
,
Gijsen
,
F.
, and
Akyildiz
,
A.
,
2019
, “
Calcifications in Atherosclerotic Plaques and Impact on Plaque Biomechanics
,”
J. Biomech.
,
87
, pp.
1
12
.10.1016/j.jbiomech.2019.03.005
28.
Streeter
,
I.
, and
de Leeuw
,
N.
,
2011
, “
A Molecular Dynamics Study of the Interprotein Interactions in Collagen Fibrils
,”
Soft Matter
,
7
(
7
), pp.
3373
3382
.10.1039/c0sm01192d
29.
He
,
B.
,
2018
,
Two-Dimensional X-Ray Diffraction
,
Wiley
,
Hoboken, NJ
.
30.
Burger
,
C.
,
Hsiao
,
B.
, and
Chu
,
B.
,
2010
, “
Preferred Orientation in Polymer Fiber Scattering
,”
Polym. Rev.
,
50
(
1
), pp.
91
111
.10.1080/15583720903503494
31.
Pabisch
,
S.
,
Wagermaier
,
W.
,
Zander
,
T.
,
Li
,
C.
, and
Fratzl
,
P.
,
2013
, “
Imaging the Nanostructure of Bone and Dentin Through Small- and Wide-Angle X-Ray Scattering
,”
Methods Enzymol.
,
532
, pp.
391
413
.10.1016/B978-0-12-416617-2.00018-7
32.
Schmid
,
F.
,
Sommer
,
G.
,
Rappolt
,
M.
,
Schulze-Bauer
,
C. A. J.
,
Regitnig
,
P.
,
Holzapfel
,
G. A.
,
Laggner
,
P.
, and
Amenitsch
,
H.
,
2005
, “
In-Situ Tensile Testing of Human Aortas by Time-Resolved Small-Angle X-Ray Scattering
,”
J. Synchrotron Radiat.
,
12
(
6
), pp.
727
733
.10.1107/S0909049505012549
33.
Purslow
,
P. P.
,
Wess
,
T. J.
, and
Hukins
,
D. W.
,
1998
, “
Collagen Orientation and Molecular Spacing During Creep and Stress-Relaxation in Soft Connective Tissues
,”
J. Exp. Biol.
,
201
(
1
), pp.
135
142
.10.1242/jeb.201.1.135
34.
Wells
,
H.
,
Sizeland
,
K.
,
Kirby
,
N.
,
Hawley
,
A.
,
Mudie
,
S.
, and
Haverkamp
,
R.
,
2015
, “
Collagen Fibril Structure and Strength in Acellular Dermal Matrix Materials of Bovine, Porcine, and Human Origin
,”
ACS Biomater. Sci. Eng.
,
1
(
10
), pp.
1026
1038
.10.1021/acsbiomaterials.5b00310
35.
Daxer
,
A.
, and
Fratzl
,
P.
,
1997
, “
Collagen Fibril Orientation in the Human Corneal Stroma and Its Implication in Keratoconus
,”
Invest. Ophthalmol. Visual Sci.
,
38
(
1
), pp.
121
129
.https://www.pubmed.ncbi.nlm.nih.gov/9008637
36.
Meek
,
K.
, and
Boote
,
C.
,
2009
, “
The Use of X-Ray Scattering Techniques to Quantify the Orientation and Distribution of Collagen in the Corneal Stroma
,”
Prog. Retinal Eye Res.
,
28
(
5
), pp.
369
392
.10.1016/j.preteyeres.2009.06.005
37.
Pijanka
,
J. K.
,
Abass
,
A.
,
Sorensen
,
T.
,
Elsheikh
,
A.
, and
Boote
,
C.
,
2013
, “
A Wide-Angle X-Ray Diffraction Method for Quantifying Collagen Orientation Across Large Tissue Areas: Application to the Human Eyeball Coat
,”
J. Appl. Crystallogr.
,
46
(
5
), pp.
1481
1489
.10.1107/S0021889813022358
38.
Liao
,
J.
,
Yang
,
L.
,
Grashow
,
J.
, and
Sacks
,
M.
,
2005
, “
Molecular Orientation of Collagen Intact Planar Connective Tissues Under Biaxial Stretch
,”
Acta Biomater.
,
1
(
1
), pp.
45
54
.10.1016/j.actbio.2004.09.007
39.
Sizeland
,
K. H.
,
Wells
,
H. C.
,
Higgins
,
J.
,
Cunanan
,
C. M.
,
Kirby
,
N.
,
Hawley
,
A.
,
Mudie
,
S. T.
, and
Haverkamp
,
R. G.
,
2014
, “
Age Dependent Differences in Collagen Alignment of Glutaraldehyde Fixed Bovine Pericardium
,”
BioMed. Res. Int.
,
2014
, pp.
189
197
.10.1155/2014/189197
40.
Liao
,
J.
,
Yang
,
L.
,
Grashow
,
J.
, and
Sacks
,
M.
,
2007
, “
The Relation Between Collagen Fibril Kinematics and Mechanical Properties in the Mitral Valve Anterior Leaflet
,”
ASME J. Biomech. Eng.
,
129
(
1
), pp.
78
87
.10.1115/1.2401186
41.
Hadian
,
M.
,
Corcoran
,
B.
,
Han
,
R.
,
Grossmann
,
J.
, and
Bradshaw
,
J.
,
2007
, “
Collagen Organization in Canine Myxomatous Mitral Valve Disease: An X-Ray Diffraction Study
,”
Bipohys. J.
,
93
(
7
), pp.
2472
2476
.10.1529/biophysj.107.107847
42.
Lee
,
C.-H.
,
Zhang
,
W.
,
Liao
,
J.
,
Carruthers
,
C. A.
,
Sacks
,
J. I.
, and
Sacks
,
M. S.
,
2015
, “
On the Presence of the Affine Fibril and Fiber Kinematics in the Mitral Valve Anterior Leaflet
,”
Biophys. J.
,
108
(
8
), pp.
2074
2087
.10.1016/j.bpj.2015.03.019
43.
Bunk
,
O.
,
Bech
,
M.
,
Jensen
,
T. H.
,
Feidenhans'l
,
R.
,
Binderup
,
T.
,
Menzel
,
A.
, and
Pfeiffer
,
F.
,
2009
, “
Multimodal X-Ray Scatter Imaging
,”
New J. Phys.
,
11
(
12
), p.
123016
.10.1088/1367-2630/11/12/123016
44.
Moger
,
C.
,
Barrett
,
R.
,
Bleuet
,
P.
,
Bradley
,
D.
,
Ellis
,
R.
,
Green
,
E.
,
Knapp
,
K.
,
Muthuvelu
,
P.
, and
Winlove
,
C.
,
2007
, “
Regional Variations of Collagen Orientation in Normal and Diseased Articular Cartilage and Subchondral Bone Determined Using Small Angle X-Ray Scattering (SAXS)
,”
Osteoarthritis Cartilage
,
15
(
6
), pp.
682
687
.10.1016/j.joca.2006.12.006
45.
Inamdar
,
S.
,
Knight
,
D.
,
Terrill
,
N.
,
Karunaratne
,
A.
,
Cacho-Nerin
,
F.
,
Knight
,
M.
, and
Gupta
,
H.
,
2017
, “
The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization During Physiological Loading of Cartilage
,”
ACS Nano
,
11
(
10
), pp.
9728
9737
.10.1021/acsnano.7b00563
46.
Fratzl
,
P.
,
Schreiber
,
S.
, and
Boyde
,
A.
,
1996
, “
Characterization of Bone Mineral Crystals in Horse Radius by Small-Angle X-Ray Scattering
,”
Calcif. Tissue Int.
,
58
(
5
), pp.
341
346
.10.1007/BF02509383
47.
Wagermaier
,
W.
,
Gupta
,
H.
,
Gourrier
,
A.
,
Paris
,
O.
,
Roschger
,
P.
,
Burghammer
,
M.
,
Riekel
,
C.
, and
Fratzl
,
P.
,
2007
, “
Scanning Texture Analysis of Lamellar Bone Using Microbeam Synchrotron X-Ray Radiation
,”
J. Appl. Crystallogr.
,
40
(
1
), pp.
115
120
.10.1107/S0021889806044888
48.
Liu
,
Y.
,
Manjubala
,
I.
,
Roschger
,
P.
,
Schell
,
H.
,
Duda
,
G.
, and
Fratzl
,
P.
,
2010
, “
Mineral Crystal Alignment in Mineralized Fracture Callus Determined by 3D Small-Angle Scattering
,”
J. Phys.: Conf. Ser.
,
247
(
1
), p.
012031
.10.1088/1742-6596/247/1/012031
49.
Seidel
,
R.
,
Gourrier
,
A.
,
Kerschnitzki
,
M.
,
Burghammer
,
M.
,
Fratzl
,
P.
,
Gupta
,
H. S.
, and
Wagermaier
,
W.
,
2012
, “
Synchrotron 3D SAXS Analysis of Bone Nanostructure
,”
Bioinspired, Biomimetic Nanobiomater.
,
1
(
2
), pp.
123
132
.10.1680/bbn.11.00014
50.
Granke
,
M.
,
Gourrier
,
A.
,
Rupin
,
F.
,
Raum
,
K.
,
Peyrin
,
F.
,
Burghammer
,
M.
,
Saied
,
A.
, and
Laugier
,
P.
,
2013
, “
Microfibril Orientation Dominated the Micro Elastic Properties of Human Bone Tissue at the Lamellar Length Scale
,”
PLoS One
,
8
(
3
), p.
e58043
.10.1371/journal.pone.0058043
51.
Georgiadis
,
M.
,
Guizar-Sicairos
,
M.
,
Zwahlen
,
A.
,
Trüssel
,
A. J.
,
Bunk
,
O.
,
Müller
,
R.
, and
Schneider
,
P.
,
2015
, “
3D Scanning SAXS: A Novel Method for the Assessment of Bone Ultrastructure Orientation
,”
Bone
,
71
, pp.
42
52
.10.1016/j.bone.2014.10.002
52.
Liebi
,
M.
,
Georgiadis
,
M.
,
Menzel
,
A.
,
Schneider
,
P.
,
Kohlbrecher
,
J.
,
Bunk
,
O.
, and
Guizar-Sicairos
,
M.
,
2015
, “
Nanostructure Surveys of Macroscopic Specimens by Small-Angle Scattering Tensor Tomography
,”
Nature
,
527
(
7578
), pp.
349
352
.10.1038/nature16056
53.
Schaff
,
F.
,
Bech
,
M.
,
Zaslansky
,
P.
,
Jud
,
C.
,
Liebi
,
M.
,
Guizar-Sicairos
,
M.
, and
Pfeiffer
,
F.
,
2015
, “
Six Dimensional Real and Reciprocal Space Small-Angle X-Ray Scattering Tomography
,”
Nature
,
527
(
7578
), pp.
353
356
.10.1038/nature16060
54.
Gray
,
H.
,
1959
,
Anatomy of the Human Body
,
Lea & Febiger
,
Philadelphia, PA
.
55.
Laclaustra
,
M.
,
Casasnovas
,
J.
,
Fernandez-Ortiz
,
A.
,
Fuster
,
V.
,
León-Latre
,
M.
,
Jiménez-Borreguero
,
L.
,
Pocovi
,
M.
,
2016
, “
Femoral and Carotid Subclinical Atherosclerosis Association With Risk Factors and Coronary Calcium: The AWHS Study
,”
J. Am. Coll. Cardiol.
,
67
(
11
), pp.
1263
1274
.10.1016/j.jacc.2015.12.056
56.
McDermott
,
M.
,
Liu
,
K.
,
Carroll
,
T.
,
Tian
,
L.
,
Ferrucci
,
L.
,
Li
,
D.
,
Carr
,
J.
,
2011
, “
Superficial Femoral Artery Plaque and Functional Performance in Peripheral Arterial Disease: Walking and Leg Circulation Study (WALCS III)
,”
JACC: Cardiovasc. Imaging
,
4
(
7
), pp.
730
739
.10.1016/j.jcmg.2011.04.009
57.
McDermott
,
M.
,
Carroll
,
T.
,
Kibbe
,
M.
,
Kramer
,
C.
,
Liu
,
K.
,
Guralnik
,
J.
,
Keeling
,
A.
,
2013
, “
Proximal Superficial Femoral Artery Occlusion, Collateral Vessels, and Walking Performance in Peripheral Artery Disease
,”
JACC: Cardiovasc. Imaging
,
6
(
6
), pp.
687
694
.10.1016/j.jcmg.2012.10.024
58.
Blanton
,
T. N.
,
Huang
,
T. C.
,
Toraya
,
H.
,
Hubbard
,
C. R.
,
Robie
,
S. B.
,
Louër
,
D.
,
Göbel
,
H. E.
,
Will
,
G.
,
Gilles
,
R.
, and
Raftery
,
T.
,
1995
, “
JCPDS—International Centre for Diffraction Data Round Robin Study of Silver Behenate. A Possible Low-Angle X-Ray Diffraction Calibration Standard
,”
Powder Diffr.
,
10
(
2
), pp.
91
95
.10.1017/S0885715600014421
59.
Deymier-Black
,
A.
,
Almer
,
J.
,
Stock
,
S.
, and
Dunand
,
D.
,
2012
, “
Variability in the Elastic Properties of Bovine Dentin at Multiple Length Scales
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
71
81
.10.1016/j.jmbbm.2011.08.005
60.
Hubbell
,
J.
, and
Seltzer
,
S.
,
1995
, “
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest
,”
National Institute of Standards and Technology
, Gaithersburg, MD, Database No. 126.https://www.nist.gov/publications/tables-x-ray-mass-attenuation-coefficients-and-mass-energyabsorption-coefficients-1-0
61.
Alavi
,
S.
,
Ruiz
,
V.
,
Krasieva
,
T.
,
Botvinick
,
E.
, and
Kheradvar
,
A.
,
2013
, “
Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
547
561
.10.1007/s10439-012-0696-z
62.
Kamma-Lorger
,
C.
,
Hayes
,
S.
,
Boote
,
C.
,
Burghammer
,
M.
,
Boulton
,
M.
, and
Meek
,
K.
,
2009
, “
Effects on Collagen Orientation in the Cornea After Trephine Injury
,”
Mol. Vision
,
15
, pp.
378
385
.https://pubmed.ncbi.nlm.nih.gov/19234631
63.
Jan
,
N.
,
Grimm
,
J.
,
Tran
,
H.
,
Lathrop
,
K.
,
Wollstein
,
G.
,
Bilonick
,
R.
,
Ishikawa
,
H.
,
Kagemann
,
L.
,
Schuman
,
J.
, and
Sigal
,
I.
,
2015
, “
Polarization Microscopy for Characterizing Fiber Orientation of Ocular Tissues
,”
Biomed. Opt. Express
,
6
(
12
), pp.
4705
4718
.10.1364/BOE.6.004705
64.
Howat
,
W.
, and
Wilson
,
B.
,
2014
, “
Tissue Fixation and the Effect of Molecular Fixatives on Downstream Staining Procedures
,”
Methods
,
70
(
1
), pp.
12
19
.10.1016/j.ymeth.2014.01.022
65.
Hickey
,
D.
, and
Hukins
,
D.
,
1979
, “
Effect of Methods of Preservation on the Arrangement of Collagen Fibrils in Connective Tissue Matrices: An X-Ray Diffraction Study of Annulus Fibrosus
,”
Connect. Tissue Res.
,
6
(
4
), pp.
223
228
.10.3109/03008207909152324
66.
Yasui
,
T.
,
Tohno
,
Y.
, and
Araki
,
T.
,
2004
, “
Characterization of Collagen Orientation in Human Dermis by Two-Dimensional Second Harmonic Generation Polarimetry
,”
Biomed. Opt.
,
9
(
2
), pp.
259
264
.10.1117/1.1644116
67.
Heidelbach
,
F.
,
Riekel
,
C.
, and
Wenk
,
H.
,
1999
, “
Quantitative Texture Analysis of Small Domains With Synchrotron Radiation X-Rays
,”
J. Appl. Crystallogr.
,
32
(
5
), pp.
841
849
.10.1107/S0021889899004999
68.
Kirby
,
N. M.
,
Mudie
,
S. T.
,
Hawley
,
A. M.
,
Cookson
,
D. J.
,
Mertens
,
H. D. T.
,
Cowieson
,
N.
, and
Samardzic-Boban
,
V.
,
2013
, “
A Low-Background-Intensity Focusing Small-Angle Scattering Undulator Beamline
,”
J. Appl. Crystallogr.
,
46
(
6
), pp.
1670
1680
.10.1107/S002188981302774X
69.
McLean
,
J. P.
,
Gan
,
Y.
,
Lye
,
T. H.
,
Qu
,
D.
,
Lu
,
H. H.
, and
Hendon
,
C. P.
,
2019
, “
High-Speed Collagen Fiber Modeling and Orientation Quantification for Optical Coherence Tomography Imaging
,”
Opt. Express
,
27
(
10
), pp.
14457
14471
.10.1364/OE.27.014457
70.
Giattina
,
S.
,
Courtney
,
B.
,
Herz
,
P.
,
Harman
,
M.
,
Shortkroff
,
S.
,
Stamper
,
D.
,
Liu
,
B.
,
Fujimoto
,
J.
, and
Brezinski
,
M.
,
2006
, “
Assessment of Coronary Plaque Collagen With Polarization Sensitive Optical Coherence Tomography (PS-OCT)
,”
Int. J. Cardiol.
,
107
(
3
), pp.
400
409
.10.1016/j.ijcard.2005.11.036
71.
Nadkarni
,
S.
,
Pierce
,
M.
,
Park
,
B.
,
de Boer
,
J.
,
Whittaker
,
P.
,
Bouma
,
B.
,
Bressner
,
J.
,
Halpern
,
E.
,
Houser
,
S.
, and
Tearney
,
G.
,
2007
, “
Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography
,”
J. Am. Coll. Cardiol.
,
49
(
13
), pp.
1474
1481
.10.1016/j.jacc.2006.11.040
72.
Kuo
,
W.
,
Chou
,
N.
,
Chou
,
C.
,
Lai
,
C.
,
Huang
,
H.
,
Wang
,
S.
, and
Shyu
,
J.
,
2007
, “
Polarization-Sensitive Optical Coherence Tomography for Imaging Human Atherosclerosis
,”
Appl. Opt.
,
46
(
13
), pp.
2520
2527
.10.1364/AO.46.002520
73.
Azinfar
,
L.
,
Ravanfar
,
M.
,
Wang
,
Y.
,
Zhang
,
K.
,
Duan
,
D.
, and
Yao
,
G.
,
2017
, “
High Resolution Imaging of the Fibrous Microstructure in Bovine Common Carotid Artery Using Optical Polarization Tractography
,”
J. Biophotonics
,
10
(
2
), pp.
231
241
.10.1002/jbio.201500229
74.
Akyildiz
,
A. C.
,
Chai
,
C.-K.
,
Oomens
,
C. W. J.
,
van der Lugt
,
A.
,
Baaijens
,
F. P. T.
,
Strijkers
,
G. J.
, and
Gijsen
,
F. J. H.
,
2017
, “
3D Fiber Orientation in Atherosclerotic Carotid Plaques
,”
J. Struct. Biol.
,
200
(
1
), pp.
28
35
.10.1016/j.jsb.2017.08.003
75.
Sacks
,
M.
,
Smith
,
D.
, and
Hiester
,
E.
,
1997
, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
,
25
(
4
), pp.
678
689
.10.1007/BF02684845
76.
Gaul
,
R.
,
Nolan
,
D.
, and
Lally
,
C.
,
2017
, “
Collagen Fibre Characterization in Arterial Tissue Under Load Using SALS
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
359
368
.10.1016/j.jmbbm.2017.07.036
77.
Davis
,
L. A.
,
Stewart
,
S. E.
,
Carsten
,
C. G.
,
Snyder
,
B. A.
,
Sutton
,
M. A.
, and
Lessner
,
S. M.
,
2016
, “
Characterization of Fracture Behavior of Human Atherosclerotic Fibrous Caps Using a Miniature Single Edge Notched Tensile Test
,”
Acta Biomater.
,
43
, pp.
101
111
.10.1016/j.actbio.2016.07.027
78.
Sang
,
C.
,
Maiti
,
S.
,
Fortunato
,
R.
,
Kofler
,
J.
, and
Robertson
,
A.
,
2018
, “
A Uniaxial Testing Approach for Consistent Failure in Vascular Tissues
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061010
.10.1115/1.4039577
79.
Deymier
,
A.
,
An
,
Y.
,
Boyle
,
J.
,
Schwartz
,
A.
,
Birman
,
V.
,
Genin
,
G.
,
Thomopoulos
,
S.
, and
Barber
,
A.
,
2017
, “
Micro-Mechanical Properties of the Tendon-to-Bone Attachment
,”
Acta Biomater.
,
56
, pp.
25
35
.10.1016/j.actbio.2017.01.037
80.
Barth
,
H.
,
Zimmerman
,
E.
,
Schaible
,
E.
,
Tang
,
S.
,
Alliston
,
T.
, and
Ritchie
,
R.
,
2011
, “
Characterization of the Effects of X-Ray Irradiation on the Hierarchical Structure and Mechanical Properties of Human Cortical Bone
,”
Biomaterials
,
32
(
34
), pp.
8892
8904
.10.1016/j.biomaterials.2011.08.013
You do not currently have access to this content.