Abstract

While the primary goal of focal therapy for prostate cancer (PCa) is conserving patient quality of life by reducing oncological burden, available modalities use thermal energy or whole-gland radiation which can damage critical neurovascular structures within the prostate and increase risk of genitourinary dysfunction. High-frequency irreversible electroporation (H-FIRE) is a promising alternative ablation modality that utilizes bursts of pulsed electric fields (PEFs) to destroy aberrant cells via targeted membrane damage. Due to its nonthermal mechanism, H-FIRE offers several advantages over state-of-the-art treatments, but waveforms have not been optimized for treatment of PCa. In this study, we characterize lethal electric field thresholds (EFTs) for H-FIRE waveforms with three different pulse widths as well as three interpulse delays in vitro and compare them to conventional irreversible electroporation (IRE). Experiments were performed in non-neoplastic and malignant prostate cells to determine the effect of waveforms on both targeted (malignant) and adjacent (non-neoplastic) tissue. A numerical modeling approach was developed to estimate the clinical effects of each waveform including extent of nonthermal ablation, undesired thermal damage, and nerve excitation. Our findings indicate that H-FIRE waveforms with pulse durations of 5 and 10 μs provide large ablations comparable to IRE with tolerable levels of thermal damage and minimized muscle contractions. Lower duration (2 μs) H-FIRE waveforms exhibit the least amount of muscle contractions but require increased voltages which may be accompanied by unwanted thermal damage.

References

1.
Litwin
,
M. S.
, and
Tan
,
H.-J.
,
2017
, “
The Diagnosis and Treatment of Prostate Cancer: A Review
,”
JAMA
,
317
(
24
), pp.
2532
2542
.10.1001/jama.2017.7248
2.
Siegel
,
R. L.
,
Miller
,
K. D.
,
Fuchs
,
H. E.
, and
Jemal
,
A.
,
2021
, “
Cancer Statistics, 2021
,”
CA: Cancer J. Clin.
,
71
(
1
), pp.
7
33
.10.3322/caac.21654
3.
Seraphin
,
T. P.
,
Joko‐Fru
,
W. Y.
,
Hämmerl
,
L.
,
Griesel
,
M.
,
Mezger
,
N. C. S.
,
Feuchtner
,
J. C.
,
Adoubi
,
I.
, et al.,
2021
, “
Presentation, Patterns of Care, and Outcomes of Patients With Prostate Cancer in Sub-Saharan Africa: A Population-Based Registry Study
,”
Cancer
,
127
(
22
), pp.
4221
4232
.10.1002/cncr.33818
4.
Ferrer
,
M.
,
Guedea
,
F.
,
Suárez
,
J. F.
,
de Paula
,
B.
,
Macías
,
V.
,
Mariño
,
A.
,
Hervás
,
A.
, et al.,
2013
, “
Quality of Life Impact of Treatments for Localized Prostate Cancer: Cohort Study With a 5 Year Follow-Up
,”
Radiother. Oncol.
,
108
(
2
), pp.
306
313
.10.1016/j.radonc.2013.05.038
5.
Moyer
,
V. A.
, and
U.S. Preventive Services Task Force
,
2012
, “
Screening for Prostate Cancer: U.S. Preventive Services Task Force Recommendation Statement
,”
Ann. Intern. Med.
,
157
(
2
), pp.
120
134
.10.7326/0003-4819-157-2-201207170-00459
6.
Jemal
,
A.
,
Culp
,
M. B.
,
Ma
,
J.
,
Islami
,
F.
, and
Fedewa
,
S. A.
,
2021
, “
Prostate Cancer Incidence 5 Years After US Preventive Services Task Force Recommendations Against Screening
,”
JNCI J. Natl. Cancer Inst.
,
113
(
1
), pp.
64
71
.10.1093/jnci/djaa068
7.
Fenton
,
J. J.
,
Weyrich
,
M. S.
,
Durbin
,
S.
,
Liu
,
Y.
,
Bang
,
H.
, and
Melnikow
,
J.
,
2018
, “
Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force
,”
JAMA
,
319
(
18
), pp.
1914
1931
.10.1001/jama.2018.3712
8.
Schmid
,
F. A.
,
Schindele
,
D.
,
Mortezavi
,
A.
,
Spitznagel
,
T.
,
Sulser
,
T.
,
Schostak
,
M.
, and
Eberli
,
D.
,
2020
, “
Prospective Multicentre Study Using High Intensity Focused Ultrasound (HIFU) for the Focal Treatment of Prostate Cancer: Safety Outcomes and Complications
,”
Urol. Oncol.
,
38
(
4
), pp.
225
230
.10.1016/j.urolonc.2019.09.001
9.
Perera
,
M.
,
Krishnananthan
,
N.
,
Lindner
,
U.
, and
Lawrentschuk
,
N.
,
2016
, “
An Update on Focal Therapy for Prostate Cancer
,”
Nat. Rev. Urol.
,
13
(
11
), pp.
641
653
.10.1038/nrurol.2016.177
10.
Roberts
,
C. B.
,
Jang
,
T. L.
,
Shao
,
Y.-H.
,
Kabadi
,
S.
,
Moore
,
D. F.
, and
Lu-Yao
,
G. L.
,
2011
, “
Treatment Profile and Complications Associated With Cryotherapy for Localized Prostate Cancer: A Population-Based Study
,”
Prostate Cancer Prostatic Dis.
,
14
(
4
), pp.
313
319
.10.1038/pcan.2011.17
11.
Onik
,
G.
,
Mikus
,
P.
, and
Rubinsky
,
B.
,
2007
, “
Irreversible Electroporation: Implications for Prostate Ablation
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
295
300
.10.1177/153303460700600405
12.
Onik
,
G.
, and
Rubinsky
,
B.
,
2010
, “
Irreversible Electroporation: First Patient Experience Focal Therapy of Prostate Cancer
,”
Irreversible Electroporation
,
Springer
, Berlin, pp.
235
247
.
13.
Guenther
,
E.
,
Klein
,
N.
,
Zapf
,
S.
,
Weil
,
S.
,
Schlosser
,
C.
,
Rubinsky
,
B.
, and
Stehling
,
M. K.
,
2019
, “
Prostate Cancer Treatment With Irreversible Electroporation (IRE): Safety, Efficacy and Clinical Experience in 471 Treatments
,”
PLoS One
,
14
(
4
), p.
e0215093
.10.1371/journal.pone.0215093
14.
Yao
,
C.
,
Dong
,
S.
,
Zhao
,
Y.
,
Lv
,
Y.
,
Liu
,
H.
,
Gong
,
L.
,
Ma
,
J.
,
Wang
,
H.
, and
Sun
,
Y.
,
2017
, “
Bipolar Microsecond Pulses and Insulated Needle Electrodes for Reducing Muscle Contractions During Irreversible Electroporation
,”
IEEE Trans. Biomed. Eng.
,
64
(
12
), pp.
2924
2937
.10.1109/TBME.2017.2690624
15.
Fusco
,
R.
,
Di Bernardo
,
E.
,
D'Alessio
,
V.
,
Salati
,
S.
, and
Cadossi
,
M.
,
2021
, “
Reduction of Muscle Contraction and Pain in Electroporation-Based Treatments: An Overview
,”
World J. Clin. Oncol.
,
12
(
5
), pp.
367
381
.10.5306/wjco.v12.i5.367
16.
Deodhar
,
A.
,
Dickfeld
,
T.
,
Single
,
G. W.
,
Hamilton
,
W. C.
, Jr.
,
Thornton
,
R. H.
,
Sofocleous
,
C. T.
,
Maybody
,
M.
,
Gónen
,
M.
,
Rubinsky
,
B.
, and
Solomon
,
S. B.
,
2011
, “
Irreversible Electroporation Near the Heart: Ventricular Arrhythmias Can Be Prevented With ECG Synchronization
,”
Am. J. Roentgenol.
,
196
(
3
), pp.
W330
W335
.10.2214/AJR.10.4490
17.
Ibey
,
B. L.
,
Ullery
,
J. C.
,
Pakhomova
,
O. N.
,
Roth
,
C. C.
,
Semenov
,
I.
,
Beier
,
H. T.
,
Tarango
,
M.
,
Xiao
,
S.
,
Schoenbach
,
K. H.
, and
Pakhomov
,
A. G.
,
2014
, “
Bipolar Nanosecond Electric Pulses Are Less Efficient at Electropermeabilization and Killing Cells Than Monopolar Pulses
,”
Biochem. Biophys. Res. Commun.
,
443
(
2
), pp.
568
573
.10.1016/j.bbrc.2013.12.004
18.
Murovec
,
T.
,
Sweeney
,
D. C.
,
Latouche
,
E.
,
Davalos
,
R. V.
, and
Brosseau
,
C.
,
2016
, “
Modeling of Transmembrane Potential in Realistic Multicellular Structures Before Electroporation
,”
Biophys. J.
,
111
(
10
), pp.
2286
2295
.10.1016/j.bpj.2016.10.005
19.
Bhonsle
,
S. P.
,
Arena
,
C. B.
,
Sweeney
,
D. C.
, and
Davalos
,
R. V.
,
2015
, “
Mitigation of Impedance Changes Due to Electroporation Therapy Using Bursts of High-Frequency Bipolar Pulses
,”
Biomed. Eng. Online
,
14
(
3
), pp.
1
14
.10.1186/1475-925X-14-S3-S3
20.
Yao
,
C.
,
Zhao
,
Y.
,
Liu
,
H.
,
Dong
,
S.
,
Lv
,
Y.
, and
Ma
,
J.
,
2017
, “
Dielectric Variations of Potato Induced by Irreversible Electroporation Under Different Pulses Based on the Cole-Cole Model
,”
IEEE Trans. Dielectr. Electr. Insul.
,
24
(
4
), pp.
2225
2233
.10.1109/TDEI.2017.006305
21.
Rolong
,
A.
,
Schmelz
,
E. M.
, and
Davalos
,
R. V.
,
2017
, “
High-Frequency Irreversible Electroporation Targets Resilient Tumor-Initiating Cells in Ovarian Cancer
,”
Integr. Biol.
,
9
(
12
), pp.
979
987
.10.1039/C7IB00116A
22.
Fesmire
,
C. C.
,
Petrella
,
R. A.
,
Fogle
,
C. A.
,
Gerber
,
D. A.
,
Xing
,
L.
, and
Sano
,
M. B.
,
2020
, “
Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model
,”
Ann. Biomed. Eng.
,
48
(
8
), pp.
2233
2246
.10.1007/s10439-019-02423-w
23.
Fang
,
Z.
,
Chen
,
L.
,
Moser
,
M. A.
,
Zhang
,
W.
,
Qin
,
Z.
, and
Zhang
,
B.
,
2021
, “
Electroporation-Based Therapy for Brain Tumors: A Review
,”
ASME J. Biomech. Eng.
,
143
(
10
), p.
100802
.10.1115/1.4051184
24.
Latouche
,
E. L.
,
Arena
,
C. B.
,
Ivey
,
J. W.
,
Garcia
,
P. A.
,
Pancotto
,
T. E.
,
Pavlisko
,
N.
,
Verbridge
,
S. S.
,
Davalos
,
R. V.
, and
Rossmeisl
,
J. H.
,
2018
, “
High-Frequency Irreversible Electroporation for Intracranial Meningioma: A Feasibility Study in a Spontaneous Canine Tumor Model
,”
Technol. Cancer Res. Treat.
,
17
, pp.
1
10
.10.1177/1533033818785285
25.
Verma
,
A.
,
Asivatham
,
S. J.
,
Deneke
,
T.
,
Castellvi
,
Q.
, and
Neal
,
R. E.
,
2021
, “
Primer on Pulsed Electrical Field Ablation: Understanding the Benefits and Limitations
,”
Circ.: Arrhythmia Electrophysiol.
,
14
(
9
), p.
e010086
.10.1161/CIRCEP.121.010086
26.
Maor
,
E.
,
Sugrue
,
A.
,
Witt
,
C.
,
Vaidya
,
V. R.
,
DeSimone
,
C. V.
,
Asirvatham
,
S. J.
, and
Kapa
,
S.
,
2019
, “
Pulsed Electric Fields for Cardiac Ablation and Beyond: A State-of-the-Art Review
,”
Heart Rhythm
,
16
(
7
), pp.
1112
1120
.10.1016/j.hrthm.2019.01.012
27.
Dong
,
S.
,
Wang
,
H.
,
Zhao
,
Y.
,
Sun
,
Y.
, and
Yao
,
C.
,
2018
, “
First Human Trial of High-Frequency Irreversible Electroporation Therapy for Prostate Cancer
,”
Technol. Cancer Res. Treat.
,
17
, pp.
1
9
.10.1177/1533033818789692
28.
Vižintin
,
A.
,
Vidmar
,
J.
,
Ščančar
,
J.
, and
Miklavčič
,
D.
,
2020
, “
Effect of Interphase and Interpulse Delay in High-Frequency Irreversible Electroporation Pulses on Cell Survival, Membrane Permeabilization and Electrode Material Release
,”
Bioelectrochemistry
,
134
, p.
107523
.10.1016/j.bioelechem.2020.107523
29.
Liu
,
H.
,
Yao
,
C.
,
Zhao
,
Y.
,
Chen
,
X.
,
Dong
,
S.
,
Wang
,
L.
, and
Davalos
,
R. V.
,
2021
, “
In Vitro Experimental and Numerical Studies on the Preferential Ablation of Chemo-Resistant Tumor Cells Induced by High-Voltage Nanosecond Pulsed Electric Fields
,”
IEEE Trans. Biomed. Eng.
,
68
(
8
), pp.
2400
2411
.10.1109/TBME.2020.3040337
30.
Ivey
,
J. W.
,
Latouche
,
E. L.
,
Sano
,
M. B.
,
Rossmeisl
,
J. H.
,
Davalos
,
R. V.
, and
Verbridge
,
S. S.
,
2015
, “
Targeted Cellular Ablation Based on the Morphology of Malignant Cells
,”
Sci. Rep.
,
5
, p.
17157
.10.1038/srep17157
31.
Yao
,
C.
,
Liu
,
H.
,
Zhao
,
Y.
,
Mi
,
Y.
,
Dong
,
S.
, and
Lv
,
Y.
,
2017
, “
Analysis of Dynamic Processes in Single-Cell Electroporation and Their Effects on Parameter Selection Based on the Finite-Element Model
,”
IEEE Trans. Plasma Sci.
,
45
(
5
), pp.
889
900
.10.1109/TPS.2017.2681433
32.
Agnass
,
P.
,
van Veldhuisen
,
E.
,
van Gemert
,
M. J.
,
van der Geld
,
C. W.
,
van Lienden
,
K. P.
,
van Gulik
,
T. M.
,
Meijerink
,
M. R.
,
Besselink
,
M. G.
,
Kok
,
H. P.
, and
Crezee
,
J.
,
2020
, “
Mathematical Modeling of the Thermal Effects of Irreversible Electroporation for In Vitro, In Vivo, and Clinical Use: A Systematic Review
,”
Int. J. Hyperthermia
,
37
(
1
), pp.
486
505
.10.1080/02656736.2020.1753828
33.
Aycock
,
K. N.
,
Zhao
,
Y.
,
Lorenzo
,
M. F.
, and
Davalos
,
R. V.
,
2021
, “
A Theoretical Argument for Extended Interpulse Delays in Therapeutic High-Frequency Irreversible Electroporation Treatments
,”
IEEE Trans. Biomed. Eng.
,
68
(
6
), pp.
1999
2010
.10.1109/TBME.2021.3049221
34.
Arena
,
C. B.
,
Szot
,
C. S.
,
Garcia
,
P. A.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2012
, “
A Three-Dimensional In Vitro Tumor Platform for Modeling Therapeutic Irreversible Electroporation
,”
Biophys. J.
,
103
(
9
), pp.
2033
2042
.10.1016/j.bpj.2012.09.017
35.
Ivey
,
J. W.
,
Wasson
,
E. M.
,
Alinezhadbalalami
,
N.
,
Kanitkar
,
A.
,
Debinski
,
W.
,
Sheng
,
Z.
,
Davalos
,
R. V.
, and
Verbridge
,
S. S.
,
2019
, “
Characterization of Ablation Thresholds for 3D-Cultured Patient-Derived Glioma Stem Cells in Response to High-Frequency Irreversible Electroporation
,”
Research
,
2019
, p.
8081315
.10.34133/2019/8081315
36.
Mercadal
,
B.
,
Arena
,
C. B.
,
Davalos
,
R. V.
, and
Ivorra
,
A.
,
2017
, “
Avoiding Nerve Stimulation in Irreversible Electroporation: A Numerical Modeling Study
,”
Phys. Med. Biol.
,
62
(
20
), pp.
8060
8079
.10.1088/1361-6560/aa8c53
37.
Pei
,
Y.
,
Moore
,
C. E.
,
Wang
,
J.
,
Tewari
,
A. K.
,
Eroshkin
,
A.
,
Cho
,
Y.-J.
,
Witt
,
H.
, et al.,
2012
, “
An Animal Model of MYC-Driven Medulloblastoma
,”
Cancer Cell
,
21
(
2
), pp.
155
167
.10.1016/j.ccr.2011.12.021
38.
Liu
,
X.
,
Krawczyk
,
E.
,
Suprynowicz
,
F. A.
,
Palechor-Ceron
,
N.
,
Yuan
,
H.
,
Dakic
,
A.
,
Simic
,
V.
, et al.,
2017
, “
Conditional Reprogramming and Long-Term Expansion of Normal and Tumor Cells From Human Biospecimens
,”
Nat. Protoc.
,
12
(
2
), pp.
439
451
.10.1038/nprot.2016.174
39.
Rajan
,
N.
,
Habermehl
,
J.
,
Coté
,
M.-F.
,
Doillon
,
C. J.
, and
Mantovani
,
D.
,
2006
, “
Preparation of Ready-to-Use, Storable and Reconstituted Type I Collagen From Rat Tail Tendon for Tissue Engineering Applications
,”
Nat. Protoc.
,
1
(
6
), pp.
2753
2758
.10.1038/nprot.2006.430
40.
Fesmire
,
C. C.
,
Petrella
,
R. A.
,
Kaufman
,
J. D.
,
Topasna
,
N.
, and
Sano
,
M. B.
,
2020
, “
Irreversible Electroporation Is a Thermally Mediated Ablation Modality for Pulses on the Order of One Microsecond
,”
Bioelectrochemistry
,
135
, p.
107544
.10.1016/j.bioelechem.2020.107544
41.
Mercadal
,
B.
,
Beitel-White
,
N.
,
Aycock
,
K. N.
,
Castellví
,
Q.
,
Davalos
,
R. V.
, and
Ivorra
,
A.
,
2020
, “
Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments
,”
Ann. Biomed. Eng.
,
48
(
5
), pp.
1451
1462
.10.1007/s10439-020-02462-8
42.
Henslee
,
B. E.
,
Morss
,
A.
,
Hu
,
X.
,
Lafyatis
,
G. P.
, and
Lee
,
L. J.
,
2011
, “
Electroporation Dependence on Cell Size: Optical Tweezers Study
,”
Anal. Chem.
,
83
(
11
), pp.
3998
4003
.10.1021/ac1019649
43.
Szot
,
C. S.
,
Arena
,
C. B.
,
Garcia
,
P. A.
,
Davalos
,
R. V.
,
Freeman
,
J. W.
, and
Rylander
,
M. N.
,
2011
, “
A Novel In Vitro Model for Irreversible Electroporation Based Cancer Therapies and Treatment Planning
,”
ASME
Paper No. SBC2011-53929.10.1115/SBC2011-53929
44.
Davalos
,
R. V.
,
Mir
,
L. M.
, and
Rubinsky
,
B.
,
2005
, “
Tissue Ablation With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
223
231
.10.1007/s10439-005-8981-8
45.
Sano
,
M. B.
,
DeWitt
,
M. R.
,
Teeter
,
S. D.
, and
Xing
,
L.
,
2018
, “
Optimization of a Single Insertion Electrode Array for the Creation of Clinically Relevant Ablations Using High-Frequency Irreversible Electroporation
,”
Comput. Biol. Med.
,
95
, pp.
107
117
.10.1016/j.compbiomed.2018.02.009
46.
Beitel-White
,
N.
,
Lorenzo
,
M. F.
,
Zhao
,
Y.
,
Aycock
,
K. N.
,
Manuchehrabadi
,
N. M.
,
Brock
,
R. M.
,
Coutermarsh-Ott
,
S.
,
Imran
,
K. M.
,
Allen
,
I. C.
, and
Davalos
,
R. V.
,
2022
, “
Comparison of Analysis Methods for Determination of Dynamic Tissue Conductivity During Microseconds-Long Pulsed Electric Fields
,”
Biomed. Signal Process. Control
,
72
, p.
103305
.10.1016/j.bspc.2021.103305
47.
Beitel-White
,
N.
,
Lorenzo
,
M. F.
,
Zhao
,
Y.
,
Brock
,
R. M.
,
Coutermarsh-Ott
,
S.
,
Allen
,
I. C.
,
Manuchehrabadi
,
N.
, and
Davalos
,
R. V.
,
2021
, “
Multi-Tissue Analysis on the Impact of Electroporation on Electrical and Thermal Properties
,”
IEEE Trans. Biomed. Eng.
,
68
(
3
), pp.
771
782
.10.1109/TBME.2020.3013572
48.
Hasgall
,
P.
,
Di Gennaro
,
F.
,
Baumgartner
,
C.
,
Neufeld
,
E.
,
Lloyd
,
B.
,
Gosselin
,
M.
,
Payne
,
D.
,
Klingenbock
,
A.
, and
Kuster
,
N.
,
2018
, “
IT'IS Database for Thermal and Electromagnetic Parameters of Biological Tissues
,” Version 4.0, IT'IS Foundation, Zurich, Switzerland.10.13099/VIP21000-04-0
49.
Edelblute
,
C. M.
,
Hornef
,
J.
,
Burcus
,
N. I.
,
Norman
,
T.
,
Beebe
,
S. J.
,
Schoenbach
,
K.
,
Heller
,
R.
,
Jiang
,
C.
, and
Guo
,
S.
,
2017
, “
Controllable Moderate Heating Enhances the Therapeutic Efficacy of Irreversible Electroporation for Pancreatic Cancer
,”
Sci. Rep.
,
7
(
1
), p.
11767
.10.1038/s41598-017-12227-4
50.
Wei
,
Z.-L.
,
Ogawa
,
R.
,
Takasaki
,
I.
,
Zhao
,
Q.-L.
,
Zheng
,
H.-C.
,
Ahmed
,
K.
,
Hassan
,
M. A.
, and
Kondo
,
T.
,
2010
, “
Mild Hyperthermia Prior to Electroporation Increases Transfection Efficiency in HCT 116, HeLa S3 and SGC 7901 Cells
,”
Biotechnol. Lett.
,
32
(
3
), pp.
367
371
.10.1007/s10529-009-0164-5
51.
Miklovic
,
T.
,
Latouche
,
E. L.
,
DeWitt
,
M. R.
,
Davalos
,
R. V.
, and
Sano
,
M. B.
,
2017
, “
A Comprehensive Characterization of Parameters Affecting High-Frequency Irreversible Electroporation Lesions
,”
Ann. Biomed. Eng.
,
45
(
11
), pp.
2524
2534
.10.1007/s10439-017-1889-2
52.
Zhang
,
B.
,
Liu
,
F.
,
Fang
,
Z.
,
Ding
,
L.
,
Moser
,
M. A.
, and
Zhang
,
W.
,
2021
, “
An In Vivo Study of a Custom-Made High-Frequency Irreversible Electroporation Generator on Different Tissues for Clinically Relevant Ablation Zones
,”
Int. J. Hyperthermia
,
38
(
1
), pp.
593
603
.10.1080/02656736.2021.1912417
53.
Casciola
,
M.
,
Xiao
,
S.
,
Apollonio
,
F.
,
Paffi
,
A.
,
Liberti
,
M.
,
Muratori
,
C.
, and
Pakhomov
,
A. G.
,
2019
, “
Cancellation of Nerve Excitation by the Reversal of Nanosecond Stimulus Polarity and Its Relevance to the Gating Time of Sodium Channels
,”
Cell. Mol. Life Sci.
,
76
(
22
), pp.
4539
4550
.10.1007/s00018-019-03126-0
54.
Martin
,
G. T.
,
Pliquett
,
U. F.
, and
Weaver
,
J. C.
,
2002
, “
Theoretical Analysis of Localized Heating in Human Skin Subjected to High Voltage Pulses
,”
Bioelectrochemistry
,
57
(
1
), pp.
55
64
.10.1016/S1567-5394(01)00176-1
55.
Davalos
,
R. V.
,
Rubinsky
,
B.
, and
Mir
,
L. M.
,
2003
, “
Theoretical Analysis of the Thermal Effects During In Vivo Tissue Electroporation
,”
Bioelectrochemistry
,
61
(
1–2
), pp.
99
107
.10.1016/j.bioelechem.2003.07.001
56.
Weaver
,
J. C.
,
1993
, “
Electroporation: A General Phenomenon for Manipulating Cells and Tissues
,”
J. Cell. Biochem.
,
51
(
4
), pp.
426
435
.10.1002/jcb.2400510407
57.
Pliquett
,
U.
,
Gift
,
E. A.
, and
Weaver
,
J. C.
,
1996
, “
Determination of the Electric Field and Anomalous Heating Caused by Exponential Pulses With Aluminum Electrodes in Electroporation Experiments
,”
Bioelectrochem. Bioenerg.
,
39
(
1
), pp.
39
53
.10.1016/0302-4598(95)05031-0
58.
Agarwal
,
A.
,
Zudans
,
I.
,
Weber
,
E. A.
,
Olofsson
,
J.
,
Orwar
,
O.
, and
Weber
,
S. G.
,
2007
, “
Effect of Cell Size and Shape on Single-Cell Electroporation
,”
Anal. Chem.
,
79
(
10
), pp.
3589
3596
.10.1021/ac062049e
59.
Schoenbach
,
K. H.
,
Beebe
,
S. J.
, and
Buescher
,
E. S.
,
2001
, “
Intracellular Effect of Ultrashort Electrical Pulses
,”
Bioelectromagnetics
,
22
(
6
), pp.
440
448
.10.1002/bem.71
60.
Zhuang
,
J.
,
Ren
,
W.
,
Jing
,
Y.
, and
Kolb
,
J. F.
,
2012
, “
Dielectric Evolution of Mammalian Cell Membranes After Exposure to Pulsed Electric Fields
,”
IEEE Trans. Dielectr. Electr. Insul.
,
19
(
2
), pp.
609
622
.10.1109/TDEI.2012.6180256
61.
Pakhomova
,
O. N.
,
Gregory
,
B. W.
,
Khorokhorina
,
V. A.
,
Bowman
,
A. M.
,
Xiao
,
S.
, and
Pakhomov
,
A. G.
,
2011
, “
Electroporation-Induced Electrosensitization
,”
PLoS One
,
6
(
2
), p.
e17100
.10.1371/journal.pone.0017100
62.
Sano
,
M. B.
,
Fesmire
,
C. C.
, and
Petrella
,
R. A.
,
2021
, “
Electro-Thermal Therapy Algorithms and Active Internal Electrode Cooling Reduce Thermal Injury in High Frequency Pulsed Electric Field Cancer Therapies
,”
Ann. Biomed. Eng.
,
49
(
1
), pp.
191
202
.10.1007/s10439-020-02524-x
63.
O'Brien
,
T. J.
,
Lorenzo
,
M. F.
,
Zhao
,
Y.
,
Neal
,
R. E.
, II
,
Robertson
,
J. L.
,
Goldberg
,
S. N.
, and
Davalos
,
R. V.
,
2019
, “
Cycled Pulsing to Mitigate Thermal Damage for Multi-Electrode Irreversible Electroporation Therapy
,”
Int. J. Hyperthermia
,
36
(
1
), pp.
952
962
.10.1080/02656736.2019.1657187
64.
Zhao
,
Y.
, and
Davalos
,
R. V.
,
2020
, “
Development of an Endothermic Electrode for Electroporation-Based Therapies: A Simulation Study
,”
Appl. Phys. Lett.
,
117
(
14
), p.
143702
.10.1063/5.0019743
65.
Arena
,
C. B.
,
Mahajan
,
R. L.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2012
, “
Phase Change Electrodes for Reducing Joule Heating During Irreversible Electroporation
,”
ASME
Paper No. SBC2012-80825.10.1115/SBC2012-80825
You do not currently have access to this content.