Abstract

We propose svMorph, a framework for interactive virtual sculpting of patient-specific vascular anatomic models. Our framework includes three tools for the creation of tortuosity, aneurysms, and stenoses in tubular vascular geometries. These shape edits are performed via geometric operations on the surface mesh and vessel centerline curves of the input model. The tortuosity tool also uses the physics-based Oriented Particles method, coupled with linear blend skinning, to achieve smooth, elastic-like deformations. Our tools can be applied separately or in combination to produce simulation-suitable morphed models. They are also compatible with popular vascular modeling software, such as simvascular. To illustrate our tools, we morph several image-based, patient-specific models to create a range of shape changes and simulate the resulting hemodynamics via three-dimensional, computational fluid dynamics. We also demonstrate the ability to quickly estimate the hemodynamic effects of the shape changes via the automated generation of associated zero-dimensional lumped-parameter models.

References

1.
Ballarin
,
F.
,
Faggiano
,
E.
,
Ippolito
,
S.
,
Manzoni
,
A.
,
Quarteroni
,
A.
,
Rozza
,
G.
, and
Scrofani
,
R.
,
2016
, “
Fast Simulations of Patient-Specific Haemodynamics of Coronary Artery Bypass Grafts Based on a POD-Galerkin Method and a Vascular Shape Parametrization
,”
J. Comput. Phys.
,
315
, pp.
609
628
.10.1016/j.jcp.2016.03.065
2.
Trusty
,
P. M.
,
Wei
,
Z. A.
,
Slesnick
,
T. C.
,
Kanter
,
K. R.
,
Spray
,
T. L.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2019
, “
The First Cohort of Prospective Fontan Surgical Planning Patients With Follow-Up Data: How Accurate is Surgical Planning?
,”
J. Thorac. Cardiovasc. Surg.
,
157
(
3
), pp.
1146
1155
.10.1016/j.jtcvs.2018.11.102
3.
Kasinpila
,
P.
,
Kong
,
S.
,
Fong
,
R.
,
Shad
,
R.
,
Kaiser
,
A. D.
,
Marsden
,
A. L.
,
Woo
,
Y. J.
, and
Hiesinger
,
W.
,
2021
, “
Use of Patient-Specific Computational Models for Optimization of Aortic Insufficiency After Implantation of Left Ventricular Assist Device
,”
J. Thorac. Cardiovasc. Surg.
,
162
(
5
), pp.
1556
1563
.10.1016/j.jtcvs.2020.04.164
4.
Lan
,
I. S.
,
Yang
,
W.
,
Feinstein
,
J. A.
,
Kreutzer
,
J.
,
Collins
,
R. T.
,
Ma
,
M.
,
Adamson
,
G. T.
, and
Marsden
,
A. L.
,
2022
, “
Virtual Transcatheter Interventions for Peripheral Pulmonary Artery Stenosis in Williams and Alagille Syndromes
,”
J. Am. Heart Assoc.
,
11
(
6
), p.
e023532
.10.1161/JAHA.121.023532
5.
Pant
,
S.
,
Sizarov
,
A.
,
Knepper
,
A.
,
Gossard
,
G.
,
Noferi
,
A.
,
Boudjemline
,
Y.
, and
Vignon-Clementel
,
I.
,
2022
, “
Multiscale Modelling of Potts Shunt as a Potential Palliative Treatment for Suprasystemic Idiopathic Pulmonary Artery Hypertension: A Paediatric Case Study
,”
Biomech. Model. Mechanobiol.
,
21
(
2
), pp.
471
511
.10.1007/s10237-021-01545-2
6.
Vedula
,
V.
,
Lee
,
J.
,
Xu
,
H.
,
Kuo
,
C.-C. J.
,
Hsiai
,
T. K.
, and
Marsden
,
A. L.
,
2017
, “
A Method to Quantify Mechanobiologic Forces During Zebrafish Cardiac Development Using 4-D Light Sheet Imaging and Computational Modeling
,”
PLoS Comput. Biol.
,
13
(
10
)10, p.
e1005828
.10.1371/journal.pcbi.1005828
7.
Schwarz
,
E. L.
,
Kelly
,
J. M.
,
Blum
,
K. M.
,
Hor
,
K. N.
,
Yates
,
A. R.
,
Zbinden
,
J. C.
,
Verma
,
A.
,
Lindsey
,
S. E.
,
Ramachandra
,
A. B.
,
Szafron
,
J. M.
,
Humphrey
,
J. D.
,
Shin'oka
,
T.
,
Marsden
,
A. L.
, and
Breuer
,
C. K.
,
2021
, “
Hemodynamic Performance of Tissue-Engineered Vascular Grafts in Fontan Patients
,”
NPJ Regen. Med.
,
6
(
1
), Article No. 38.10.1038/s41536-021-00148-w
8.
Dong
,
M. L.
,
Lan
,
I. S.
,
Yang
,
W.
,
Rabinovitch
,
M.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2021
, “
Computational Simulation-Derived Hemodynamic and Biomechanical Properties of the Pulmonary Arterial Tree Early in the Course of Ventricular Septal Defects
,”
Biomech. Model. Mechanobiol.
,
20
(
6
), pp.
2471
2489
.10.1007/s10237-021-01519-4
9.
Teeraratkul
,
C.
,
Irwin
,
Z.
,
Shadden
,
S. C.
, and
Mukherjee
,
D.
,
2021
, “
Computational Investigation of Blood Flow and Flow-Mediated Transport in Arterial Thrombus Neighborhood
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
701
715
.10.1007/s10237-020-01411-7
10.
Taylor
,
C.
, and
Figueroa
,
C.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.10.1146/annurev.bioeng.10.061807.160521
11.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
12.
Maher
,
G.
,
Wilson
,
N.
, and
Marsden
,
A.
,
2019
, “
Accelerating Cardiovascular Model Building With Convolutional Neural Networks
,”
Med. Biol. Eng. Comput.
,
57
(
10
), pp.
2319
2335
.10.1007/s11517-019-02029-3
13.
Maher
,
G.
,
Parker
,
D.
,
Wilson
,
N.
, and
Marsden
,
A.
,
2020
, “
Neural Network Vessel Lumen Regression for Automated Lumen Cross-Section Segmentation in Cardiovascular Image-Based Modeling
,”
Cardiovasc. Eng. Technol.
,
11
(
6
), pp.
621
635
.10.1007/s13239-020-00497-5
14.
Kong
,
F.
, and
Shadden
,
S. C.
,
2020
, “
Automating Model Generation for Image-Based Cardiac Flow Simulation
,”
ASME J. Biomech. Eng.
,
142
(
11
), p.
111011
.10.1115/1.4048032
15.
Schaap
,
M.
,
van Walsum
,
T.
,
Neefjes
,
L.
,
Metz
,
C.
,
Capuano
,
E.
,
de Bruijne
,
M.
, and
Niessen
,
W.
,
2011
, “
Robust Shape Regression for Supervised Vessel Segmentation and Its Application to Coronary Segmentation in Cta
,”
IEEE Trans. Med. Imaging
,
30
(
11
), pp.
1974
1986
.10.1109/TMI.2011.2160556
16.
Pekkan
,
K.
,
Whited
,
B.
,
Kanter
,
K.
,
Sharma
,
S.
,
Zelicourt
,
D.
,
Sundareswaran
,
K.
,
Frakes
,
D.
,
Rossignac
,
J.
, and
Yoganathan
,
A. P.
,
2008
, “
Patient-Specific Surgical Planning and Hemodynamic Computational Fluid Dynamics Optimization Through Free-Form Haptic Anatomy Editing Tool (SURGEM)
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1139
1152
.10.1007/s11517-008-0377-0
17.
Luffel
,
M.
,
Sati
,
M.
,
Rossignac
,
J.
,
Yoganathan
,
A. P.
,
Haggerty
,
C. M.
,
Restrepo
,
M.
,
Slesnick
,
T. C.
,
Kanter
,
K. R.
,
Del Nido
,
P.
, and
Fogel
,
M. A.
,
2016
, “
SURGEM: A Solid Modeling Tool for Planning and Optimizing Pediatric Heart Surgeries
,”
CAD Comput. Aided Des.
,
70
, pp.
3
12
.10.1016/j.cad.2015.06.018
18.
Shi
,
H.
,
Ames
,
J.
, and
Randles
,
A.
,
2020
, “
Harvis: An Interactive Virtual Reality Tool for Hemodynamic Modification and Simulation
,”
J. Comput. Sci.
,
43
, p.
101091
.10.1016/j.jocs.2020.101091
19.
Kjeldsberg
,
H. A.
,
Bergersen
,
A. W.
, and
Valen-Sendstad
,
K.
,
2019
, “
Morphman: Automated Manipulation of Vascular Geometries
,”
J. Open Source Software
,
4
(
35
), p.
1065
.10.21105/joss.01065
20.
Pegolotti
,
L.
,
Pfaller
,
M. R.
,
Marsden
,
A. L.
, and
Deparis
,
S.
,
2021
, “
Model Order Reduction of Flow Based on a Modular Geometrical Approximation of Blood Vessels
,”
Comput. Methods Appl. Mech. Eng.
,
380
, p.
113762
.10.1016/j.cma.2021.113762
21.
Liang
,
L.
,
Mao
,
W.
, and
Sun
,
W.
,
2020
, “
A Feasibility Study of Deep Learning for Predicting Hemodynamics of Human Thoracic Aorta
,”
J. Biomech.
,
99
, p.
109544
.10.1016/j.jbiomech.2019.109544
22.
Pfaller
,
M. R.
,
Pham
,
J.
,
Wilson
,
N. M.
,
Parker
,
D. W.
, and
Marsden
,
A. L.
,
2021
, “
On the Periodicity of Cardiovascular Fluid Dynamics Simulations
,”
Ann. Biomed. Eng.
,
49
(
12
), pp.
3574
3592
.10.1007/s10439-021-02796-x
23.
Pfaller
,
M. R.
,
Pham
,
J.
,
Verma
,
A.
,
Wilson
,
N. M.
,
Parker
,
D. W.
,
Yang
,
W.
, and
Marsden
,
A. L.
,
2022
, “
Automated Generation of 0D and 1D Reduced-Order Models of Patient-Specific Blood Flow
,”
Int. J. Num. Meth. Biomed. Eng.
, 38(10).10.1002/cnm.3639
24.
Dur
,
O.
,
Coskun
,
S. T.
,
Coskun
,
K. O.
,
Frakes
,
D.
,
Kara
,
L. B.
, and
Pekkan
,
K.
,
2011
, “
Computer-Aided Patient-Specific Coronary Artery Graft Design Improvements Using CFD Coupled Shape Optimizer
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
35
47
.10.1007/s13239-010-0029-z
25.
Maher
,
G. D.
,
Fleeter
,
C. M.
,
Schiavazzi
,
D. E.
, and
Marsden
,
A. L.
,
2021
, “
Geometric Uncertainty in Patient-Specific Cardiovascular Modeling With Convolutional Dropout Networks
,”
Comput. Methods Appl. Mech. Eng.
,
386
, p.
114038
.10.1016/j.cma.2021.114038
26.
Schroeder
,
W.
,
Avila
,
L.
, and
Hoffman
,
W.
,
2000
, “
Visualizing With Vtk: A Tutorial
,”
IEEE Comput. Graph. Appl.
,
20
(
5
), pp.
20
27
.10.1109/38.865875
27.
Müller
,
M.
, and
Chentanez
,
N.
,
2011
, “
Solid Simulation With Oriented Particles
,”
ACM Trans. Graph.
,
30
(
4
), pp.
1
10
.10.1145/2010324.1964987
28.
Müller
,
M.
,
Heidelberger
,
B.
,
Teschner
,
M.
, and
Gross
,
M.
,
2005
, “
Meshless Deformations Based on Shape Matching
,”
ACM Trans. Graph.
,
24
(
3
), pp.
471
478
. jul.10.1145/1073204.1073216
29.
Kavan
,
L.
,
2014
, “
Skinning: Real-Time Shape Deformation. Part I: Direct Skinning Methods and Deformation Primitives
,” SIGGRAPH Course.https://skinning.org/direct-methods.pdf
30.
Jacobson
,
A.
,
2014
, “
Skinning: Real-Time Shape Deformation. Part II: Automatic Skinning Via Constrained Energy Optimization
,” SIGGRAPH Course.https://skinning.org/automatic-methods-slides.pdf
31.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
32.
Franca
,
L. P.
, and
Frey
,
S. L.
,
1992
, “
Stabilized Finite Element Methods: II. the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2–3
), pp.
209
233
.10.1016/0045-7825(92)90041-H
33.
Whiting
,
C. H.
, and
Jansen
,
K. E.
,
2001
, “
A Stabilized Finite Element Method for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
34.
Moghadam
,
M. E.
,
Vignon-Clementel
,
I. E.
,
Figliola
,
R.
, and
Marsden
,
A. L.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
,
244
, pp.
63
79
.10.1016/j.jcp.2012.07.035
35.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.10.1007/s00466-013-0868-1
36.
Conover
,
T.
,
Hlavacek
,
A. M.
,
Migliavacca
,
F.
,
Kung
,
E.
,
Dorfman
,
A.
,
Figliola
,
R. S.
,
Hsia
,
T.-Y.
,
Taylor
,
A.
,
Khambadkone
,
S.
,
Schievano
,
S.
,
de Leval
,
M.
,
Hsia
,
T.-Y.
,
Bove
,
E.
,
Dorfman
,
A.
,
Baker
,
G. H.
,
Hlavacek
,
A.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Dubini
,
G.
,
Marsden
,
A.
,
Vignon-Clementel
,
I.
,
Figliola
,
R.
, and
McGregor
,
J.
,
2018
, “
An Interactive Simulation Tool for Patient-Specific Clinical Decision Support in Single-Ventricle Physiology
,”
J. Thorac. Cardiovasc. Surg.
,
155
(
2
), pp.
712
721
.10.1016/j.jtcvs.2017.09.046
37.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-Alpha Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.10.1016/S0045-7825(00)00203-6
38.
Wilson
,
N. M.
,
Ortiz
,
A. K.
, and
Johnson
,
A. B.
,
2013
, “
The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results
,”
ASME J. Med. Devices
,
7
(
4
), p.
040923
.10.1115/1.4025983
39.
Belvroy
,
V. M.
,
de Beaufort
,
H. W.
,
van Herwaarden
,
J. A.
,
Bismuth
,
J.
,
Moll
,
F. L.
, and
Trimarchi
,
S.
,
2019
, “
Tortuosity of the Descending Thoracic Aorta: Normal Values by Age
,”
PLoS One
,
14
(
4
), p.
e0215549
.10.1371/journal.pone.0215549
40.
Ciurică
,
S.
,
Lopez-Sublet
,
M.
,
Loeys
,
B. L.
,
Radhouani
,
I.
,
Natarajan
,
N.
,
Vikkula
,
M.
,
Maas
,
A. H.
,
Adlam
,
D.
, and
Persu
,
A.
,
2019
, “
Arterial Tortuosity
,”
Hypertension
,
73
(
5
), pp.
951
960
.10.1161/HYPERTENSIONAHA.118.11647
41.
Zhang
,
X.
,
Luo
,
M.
,
Fang
,
K.
,
Li
,
J.
,
Peng
,
Y.
,
Zheng
,
L.
, and
Shu
,
C.
,
2021
, “
Application of 3D Curvature and Torsion in Evaluating Aortic Tortuosity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
95
, p.
105619
.10.1016/j.cnsns.2020.105619
42.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
,
2009
, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
12
.10.1115/1.3005200
43.
Wilson
,
J. S.
,
Virag
,
L.
,
Di Achille
,
P.
,
Karšaj
,
I.
, and
Humphrey
,
J. D.
,
2013
, “
Biochemomechanics of Intraluminal Thrombus in Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021011
.10.1115/1.4023437
44.
Vollmar
,
J.
,
Pauschinger
,
P.
,
Paes
,
E.
,
Henze
,
E.
, and
Friesch
,
A.
,
1989
, “
Aortic Aneurysms as Late Sequelae of Above-Knee Amputation
,”
Lancet
,
334
(
8667
), pp.
834
835
.10.1016/S0140-6736(89)92999-1
45.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.10.1007/s10439-010-0083-6
46.
De Goes
,
F.
, and
James
,
D. L.
,
2017
, “
Regularized Kelvinlets: Sculpting Brushes Based on Fundamental Solutions of Elasticity
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
11
.10.1145/3072959.3073595
47.
Haldar
,
K.
,
1985
, “
Effects of the Shape of Stenosis on the Resistance to Blood Flow Through an Artery
,”
Bull. Math. Biol.
,
47
(
4
), pp.
545
550
.10.1016/S0092-8240(85)90020-5
48.
Freidoonimehr
,
N.
,
Chin
,
R.
,
Zander
,
A.
, and
Arjomandi
,
M.
,
2021
, “
Effect of Shape of the Stenosis on the Hemodynamics of a Stenosed Coronary Artery
,”
Phys. Fluids
,
33
(
8
), p.
081914
.10.1063/5.0058765
49.
Cani-Gascuel
,
M.
, and
Desbrun
,
M.
,
1997
, “
Animation of Deformable Models Using Implicit Surfaces
,”
IEEE Trans. Visualization Comput. Graph.
,
3
(
1
), pp.
39
50
.10.1109/2945.582343
50.
Botsch
,
M.
,
Kobbelt
,
L.
,
Pauly
,
M.
,
Alliez
,
P.
, and
Levy
,
B.
,
2010
,
Polygon Mesh Processing
,
A K Peters/CRC Press
, Natick, MA.
51.
Jadhav
,
P.
,
Agrawal
,
N.
, and
Patil
,
O.
,
2017
, “
Flow Characteristics of Helical Capillary Tube for Transcritical CO2 Refrigerant Flow
,”
Energy Procedia
,
109
, pp.
431
438
.10.1016/j.egypro.2017.03.055
You do not currently have access to this content.