Abstract

Hydrogel microbeads are engineered spherical microgels widely used for biomedical applications in cell cultures, tissue engineering, and drug delivery. Their mechanical and physical properties (i.e., modulus, porosity, diffusion) heavily influence their utility by affecting encapsulated cellular behavior, biopayload elution kinetics, and stability for longer term cultures. There is a need to quantify these properties to guide microbead design for effective application. However, there are few techniques with the μN-level resolution required to evaluate these relatively small, compliant constructs. To circumvent mechanically testing individual microbeads, researchers often approximate microbead properties by characterizing larger bulk gel analogs of the same material formulation. This approach provides some insight into the hydrogel properties. However, bulk gels possess key structural and mechanical differences compared to their microbead equivalents, which may limit their accuracy and utility as analogs for estimating microbead properties. Herein, we explore how microbead properties are influenced by hydrogel formulation (i.e., alginate concentration, divalent cation crosslinker, and crosslinker concentration), and whether these trends are accurately reflected in bulk gel analogs. To accomplish this, we utilize laser direct-write bioprinting to create 12 × 12 arrays of alginate microbeads and characterize all 144 microbeads in parallel using a commercially available microcompression system. In this way, the compressive load is distributed across a large number of beads, thus amplifying sample signal. Comparing microbead properties to those of their bulk gel analogs, we found that their trends in modulus, porosity, and diffusion with hydrogel formulation are consistent, yet bulk gels exhibit significant discrepancies in their measured values.

References

1.
Fernandes
,
A. M.
,
Fernandes
,
T. G.
,
Diogo
,
M. M.
,
da Silva
,
C. L.
,
Henrique
,
D.
, and
Cabral
,
J. M. S.
,
2007
, “
Mouse Embryonic Stem Cell Expansion in a Microcarrier-Based Stirred Culture System
,”
J. Biotechnol.
,
132
(
2
), pp.
227
236
.10.1016/j.jbiotec.2007.05.031
2.
Lock
,
L. T.
, and
Tzanakakis
,
E. S.
,
2009
, “
Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny in a Microcarrier Stirred-Suspension Culture
,”
Tissue Eng.
,
15
(
8
), pp.
2051
2063
.10.1089/ten.tea.2008.0455
3.
Song
,
K.
,
Yang
,
Y.
,
Li
,
S.
,
Wu
,
M.
,
Wu
,
Y.
,
Lim
,
M.
, and
Liu
,
T.
,
2014
, “
In Vitro Culture and Oxygen Consumption of NSCs in Size-Controlled Neurospheres of Ca-Alginate/Gelatin Microbead
,”
Mater. Sci. Eng. C
,
40
, pp.
197
203
.10.1016/j.msec.2014.03.028
4.
Gröhn
,
P.
,
Klöck
,
G.
, and
Zimmermann
,
U.
,
1997
, “
Collagen-Coated Ba(2+)-Alginate Microcarriers for the Culture of Anchorage-Dependent Mammalian Cells
,”
Biotechniques
,
22
(
5
), pp.
970
975
.10.2144/97225rr06
5.
Klokk
,
T. I.
, and
Melvik
,
J. E.
,
2002
, “
Controlling the Size of Alginate Gel Beads by Use of a High Electrostatic Potential
,”
J. Microencapsulation
,
19
(
4
), pp.
415
424
.10.1080/02652040210144234
6.
Tan
,
W.-H.
, and
Takeuchi
,
S.
,
2007
, “
Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation
,”
Adv. Mater.
,
19
(
18
), pp.
2696
2701
.10.1002/adma.200700433
7.
Gombotz
,
W. R.
, and
Wee
,
S. F.
,
1998
, “
Protein Release From Alginate Matrices
,”
Adv. Drug Deliv. Rev.
,
31
(
3
), pp.
267
285
.10.1016/S0169-409X(97)00124-5
8.
Evans
,
N. D.
,
Minelli
,
C.
,
Gentleman
,
E.
,
LaPointe
,
V.
,
Patankar
,
S. N.
,
Kallivretaki
,
M.
,
Chen
,
X.
,
Roberts
,
C. J.
, and
Stevens
,
M. M.
,
2009
, “
Substrate Stiffness Affects Early Differentiation Events in Embryonic Stem Cells
,”
Eur. Cell. Mater.
,
18
, pp.
1
14
.10.22203/eCM.v018a01
9.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y.-L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.10.1126/science.1116995
10.
Vincent
,
L. G.
,
Choi
,
Y. S.
,
Alonso-Latorre
,
B.
,
Álamo
,
J. C.
, and
Engler
,
A. J.
,
2013
, “
Mesenchymal Stem Cell Durotaxis Depends on Substrate Stiffness Gradient Strength
,”
Biotechnol. J
,
8
(
4
), pp.
472
484
.10.1002/biot.201200205
11.
Murphy
,
C. M.
,
Haugh
,
M. G.
, and
O'Brien
,
F. J.
,
2010
, “
The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen Glycosaminoglycan Scaffolds for Tissue Engineering
,”
Biomaterials
,
31
(
3
), pp.
461
466
.10.1016/j.biomaterials.2009.09.063
12.
Chaudhuri
,
O.
,
Gu
,
L.
,
Klumpers
,
D.
,
Darnell
,
M.
,
Bencherif
,
S. A.
,
Weaver
,
J. C.
,
Huebsch
,
N.
,
Lee
,
H.-p.
,
Lippens
,
E.
,
Duda
,
G. N.
, and
Mooney
,
D. J.
,
2016
, “
Hydrogels With Tunable Stress Relaxation Regulate Stem Cell Fate
,”
Nat. Mater.
,
15
(
3
), pp.
326
334
.10.1038/nmat4489
13.
Chaudhuri
,
O.
,
2015
, “
Substrate Stress Relaxation Regulates Cell Spreading
,”
Nat. Commun.
,
6
, p.
6364
.10.1038/ncomms7365
14.
Mao
,
A. S.
,
Shin
,
J.-W.
,
Utech
,
S.
,
Wang
,
H.
,
Uzun
,
O.
,
Li
,
W.
,
Cooper
,
M.
,
Hu
,
Y.
,
Zhang
,
L.
,
Weitz
,
D. A.
, and
Mooney
,
D. J.
,
2017
, “
Deterministic Encapsulation of Single Cells in Thin Tunable Microgels for Niche Modelling and Therapeutic Delivery
,”
Nat. Mater.
,
16
(
2
), pp.
236
243
.10.1038/nmat4781
15.
Li
,
L.
,
Davidovich
,
A. E.
,
Schloss
,
J. M.
,
Chippada
,
U.
,
Schloss
,
R. R.
,
Langrana
,
N. A.
, and
Yarmush
,
M. L.
,
2011
, “
Neural Lineage Differentiation of Embryonic Stem Cells Within Alginate Microbeads
,”
Biomaterials
,
32
(
20
), pp.
4489
4497
.10.1016/j.biomaterials.2011.03.019
16.
Mørch
,
Ý. A.
,
Donati
,
I.
,
Strand
,
B. L.
, and
Skjåk-Bræk
,
G.
,
2006
, “
Effect of Ca2+, Ba2+, and Sr2+ on Alginate Microbeads
,”
Biomacromolecules
,
7
(
5
), pp.
1471
1480
.10.1021/bm060010d
17.
Richardson
,
T.
,
Barner
,
S.
,
Candiello
,
J.
,
Kumta
,
P. N.
, and
Banerjee
,
I.
,
2016
, “
Capsule Stiffness Regulates the Efficiency of Pancreatic Differentiation of Human Embryonic Stem Cells
,”
Acta Biomater.
, 35, pp.
153
165
.10.1016/j.actbio.2016.02.025
18.
Mercadé-Prieto
,
R.
, and
Zhang
,
Z.
,
2012
, “
Mechanical Characterization of Microspheres – Capsules, Cells and Beads: A Review
,”
J. Microencapsulation
,
29
(
3
), pp.
277
285
.10.3109/02652048.2011.646331
19.
Lekka
,
M.
,
Sainz-Serp
,
D.
,
Kulik
,
A. J.
, and
Wandrey
,
C.
,
2004
, “
Hydrogel Microspheres: Influence of Chemical Composition on Surface Morphology, Local Elastic Properties, and Bulk Mechanical Characteristics
,”
Langmuir
,
20
(
23
), pp.
9968
9977
.10.1021/la048389h
20.
Liu
,
K.
,
Williams
,
D.
, and
Briscoe
,
B.
,
1996
, “
Compressive Deformation of a Single Microcapsule
,”
Phys. Rev. E
,
54
(
6
), pp.
6673
6680
.10.1103/PhysRevE.54.6673
21.
Briscoe
,
B. J.
,
Liu
,
K. K.
, and
Williams
,
D. R.
,
1998
, “
Adhesive Contact Deformation of a Single Microelastomeric Sphere
,”
J. Colloid Interface Sci.
,
200
(
2
), pp.
256
264
.10.1006/jcis.1997.5365
22.
Arfsten
,
J.
,
Bradtmöller
,
C.
,
Kampen
,
I.
, and
Kwade
,
A.
,
2008
, “
Compressive Testing of Single Yeast Cells in Liquid Environment Using a Nanoindentation System
,”
J. Mater. Res.
,
23
(
12
), pp.
3153
3160
.10.1557/JMR.2008.0383
23.
Kingsley
,
D. M.
,
Dias
,
A. D.
,
Chrisey
,
D. B.
, and
Corr
,
D. T.
,
2013
, “
Single-Step Laser-Based Fabrication and Patterning of Cell-Encapsulated Alginate Microbeads
,”
Biofabrication
,
5
(
4
), p.
045006
.10.1088/1758-5082/5/4/045006
24.
Kingsley
,
D. M.
,
McCleery
,
C. H.
,
Johnson
,
C. D.
,
Bramson
,
M. T.
,
Rende
,
D.
,
Gilbert
,
R. J.
, and
Corr
,
D. T.
,
2019
, “
Multi-Modal Characterization of Polymeric Gels to Determine the Influence of Testing Method on Observed Elastic Modulus
,”
J. Mech. Behav. Biomed. Mater.
,
92
, pp.
152
161
.10.1016/j.jmbbm.2019.01.003
25.
Wells
,
R. G.
,
2013
, “
Tissue Mechanics and Fibrosis
,”
Biochim. Biophys. Acta
,
1832
(
7
), pp.
884
890
.10.1016/j.bbadis.2013.02.007
26.
Yan
,
Y.
,
Zhang
,
Z.
,
Stokes
,
J. R.
,
Zhou
,
Q.-Z.
,
Ma
,
G.-H.
, and
Adams
,
M. J.
,
2009
, “
Mechanical Characterization of Agarose Micro-Particles With a Narrow Size Distribution
,”
Powder Technol.
,
192
(
1
), pp.
122
130
.10.1016/j.powtec.2008.12.006
27.
Chan
,
E. S.
,
Lim
,
T. K.
,
Voo
,
W. P.
,
Pogaku
,
R.
,
Tey
,
B. T.
, and
Zhang
,
Z.
,
2011
, “
Effect of Formulation of Alginate Beads on Their Mechanical Behavior and Stiffness
,”
Particuology
,
9
(
3
), pp.
228
234
.10.1016/j.partic.2010.12.002
28.
Olderoy
,
M. O.
,
Xie
,
M.
,
Andreassen
,
J. P.
,
Strand
,
B. L.
,
Zhang
,
Z.
, and
Sikorski
,
P.
,
2012
, “
Viscoelastic Properties of Mineralized Alginate Hydrogel Beads
,”
J. Mater. Sci. Mater. Med.
,
23
(
7
), pp.
1619
1627
.10.1007/s10856-012-4655-x
29.
Corr
,
D. T.
,
Gallant-behm
,
C. L.
,
Shrive
,
N. G.
, and
Hart
,
D. A.
,
2009
, “
Biomechanical Behavior of Scar Tissue and Uninjured Skin in a Porcine Model
,”
Wound Repair Regener.
,
17
(
2
), pp.
250
259
.10.1111/j.1524-475X.2009.00463.x
30.
Turner
,
S.
,
1973
, “
Creep in Glassy Polymers
,” R. N. Haward, ed.,
The Physics of Glassy Polymers, Materials Science Series
, Springer, Dordrecht, The Netherlands.10.1007/978-94-010-2355-9_5
31.
Lakes
,
R. S.
, and
Vanderby
,
R.
,
1999
, “
Interrelation of Creep and Relaxation: A Modeling Approach for Ligaments
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
612
615
.10.1115/1.2800861
32.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.10.1114/1.1408926
33.
Chaudhuri
,
O.
,
Koshy
,
S. T.
,
Branco da Cunha
,
C.
,
Shin
,
J.-W.
,
Verbeke
,
C. S.
,
Allison
,
K. H.
, and
Mooney
,
D. J.
,
2014
, “
Extracellular Matrix Stiffness and Composition Jointly Regulate the Induction of Malignant Phenotypes in Mammary Epithelium
,”
Nat. Mater.
,
13
(
10
), pp.
970
978
.10.1038/nmat4009
34.
Pluen
,
A.
,
Netti
,
P. A.
,
Jain
,
R. K.
, and
Berk
,
D. A.
,
1999
, “
Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations
,”
Biophys. J.
,
77
(
1
), pp.
542
552
.10.1016/S0006-3495(99)76911-0
35.
Saltzman
,
W. M.
,
Radomsky
,
M. L.
,
Whaley
,
K. J.
, and
Cone
,
R. A.
,
1994
, “
Antibody Diffusion in Human Cervical Mucus
,”
Biophys. J.
,
66
(
2
), pp.
508
515
.10.1016/S0006-3495(94)80802-1
36.
Renkin
,
E. M.
,
1954
, “
Filtration, Diffusion, and Molecular Sieving Through Porous Cellulose Membranes
,”
J. Gen. Physiol.
,
38
(
2
), p.
225
.https://pubmed.ncbi.nlm.nih.gov/13211998/
37.
Kuo
,
C. K.
, and
Ma
,
P. X.
,
2001
, “
Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering—Part 1: Structure, Gelation Rate and Mechanical Properties
,”
Biomaterials
,
22
(
6
), pp.
511
521
.10.1016/S0142-9612(00)00201-5
38.
Huag
,
A.
,
1961
, “
The Affinity of Some Divalent Metals to Different Types of Alginates
,”
Acta Chem. Scand.
,
15
(
8
), p.
1794
.10.3891/acta.chem.scand.15-1794
39.
Huag
,
A.
, and
Smidsrod
,
O.
,
1970
, “
Selectivity of Some Anionic Polymers for Divalent Metal Ions
,”
Acta Chem. Scand.
,
24
(
3
), pp.
843
854
.10.3891/acta.chem.scand.24-0843
40.
Wang
,
C. X.
,
Cowen
,
C.
,
Zhang
,
Z.
, and
Thomas
,
C. R.
,
2005
, “
High-Speed Compression of Single Alginate Microspheres
,”
Chem. Eng. Sci.
,
60
(
23
), pp.
6649
6657
.10.1016/j.ces.2005.05.052
41.
Mahdavinia
,
G. R.
,
Mousavi
,
S. B.
,
Karimi
,
F.
,
Marandi
,
G. B.
,
Garabaghi
,
H.
, and
Shahabvand
,
S.
,
2009
, “
Synthesis of Porous Poly(Acrylamide) Hydrogels Using Alcium Carbonate and Its Application for Slow Release of Potassium Nitrate
,”
Express Polym. Lett.
,
3
(
5
), pp.
279
285
.10.3144/expresspolymlett.2009.35
You do not currently have access to this content.