Abstract

In this work, we present a new experimental setup for the assessment of the anisotropic properties of Bovine Pericardium (BP) membranes. The chemically fixed BP samples have been subjected to a bulge test with in situ confocal laser scanning at increasing applied pressure. The high resolution topography provided by the confocal laser scanning has allowed to obtain a quantitative measure of the bulge displacement; after polynomial fitting, principal curvatures have been obtained and a degree of anisotropy (DA) has been defined as the normalized difference between the maximum and minimum principal curvatures. The experiments performed on the BP membranes have allowed us to obtain pressure-displacement data which clearly exhibit distinct principal curvatures indicating an anisotropic response. A comparison with curvatures data obtained on isotropic Nitrile Buthadiene Rubber (NBR) samples has confirmed the effectiveness of the experimental setup for this specific purpose. Numerical simulations of the bulge tests have been performed with the purpose of identifying a range of constitutive parameters which well describes the obtained range of DA on the BP membranes. The DA values have been partially validated with biaxial tests available in literature and with suitably performed uni-axial tensile tests.

References

1.
Whelan
,
A.
,
Duffy
,
J.
,
Gaul
,
R. T.
,
O'Reilly
,
D.
,
Nolan
,
D. R.
,
Gunning
,
P.
,
Lally
,
C.
, and
Murphy
,
B. P.
,
2019
, “
Collagen Fibre Orientation and Dispersion Govern Ultimate Tensile Strength, Stiffness and the Fatigue Performance of Bovine Pericardium
,”
J. Mech. Behav. Biomed. Mater.
,
90
(
2
), pp.
54
60
.10.1016/j.jmbbm.2018.09.038
2.
Zioupos
,
P.
,
Barbenel
,
J. C.
, and
Fisher
,
J.
,
1992
, “
Mechanical and Optical Anisotropy of Bovine Pericardium
,”
Med. Biol. Eng. Comput.
,
30
(
1
), pp.
76
82
.10.1007/BF02446197
3.
Burriesci
,
G.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
,
1999
, “
Influence of Anisotropy on the Mechanical Behaviour of Bioprosthetic Heart Valves
,”
J. Med. Eng. Technol.
,
23
(
6
), pp.
203
215
.10.1080/030919099294050
4.
Whelan
,
A.
,
Williams
,
E.
,
Nolan
,
D. R.
,
Murphy
,
B.
,
Gunning
,
P. S.
,
O'Reilly
,
D.
, and
Lally
,
C.
,
2021
, “
Bovine Pericardium of High Fibre Dispersion Has High Fatigue Life and Increased Collagen Content; Potentially an Untapped Source of Heart Valve Leaflet Tissue
,”
Ann. Biomed. Eng.
,
49
(
3
), pp.
1022
1032
.10.1007/s10439-020-02644-4
5.
Sellaro
,
T. L.
,
Hildebrand
,
D.
,
Lu
,
Q.
,
Vyavahare
,
N.
,
Scott
,
M.
, and
Sacks
,
M. S.
,
2007
, “
Effects of Collagen Fiber Orientation on the Response of Biologically Derived Soft Tissue Biomaterials to Cyclic Loading
,”
J. Biomed. Mater. Res., Part A
,
80A
(
1
), pp.
194
205
.10.1002/jbm.a.30871
6.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1998
, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
(
5
), pp.
892
902
.10.1114/1.135
7.
Whelan
,
A.
,
Williams
,
E.
,
Fitzpatrick
,
E.
,
Murphy
,
B. P.
,
Gunning
,
P. S.
,
O'Reilly
,
D.
, and
Lally
,
C.
,
2021
, “
Collagen Fibre-Mediated Mechanical Damage Increases Calcification of Bovine Pericardium for Use in Bioprosthetic Heart Valves
,”
Acta Biomater.
,
128
(
7
), pp.
384
392
.10.1016/j.actbio.2021.04.046
8.
Yanfei
,
C.
,
Shigang
,
A.
,
Jingda
,
T.
,
Yongmao
,
P.
,
Liqun
,
T.
, and
Daining
,
F.
,
2017
, “
Characterizing the Viscoelastic Properties of Hydrogel Thin Films by Bulge Test
,”
ASME J. Appl. Mech.
,
84
(
6
), p. 061995.10.1115/1.4036394
9.
Paez
,
J. M. G.
,
Jorge
,
E.
,
Rocha
,
A.
,
Maestro
,
M.
,
Castillo-Olivares
,
J. L.
,
Millan
,
I.
,
Carrera
,
A.
, et al.,
2002
, “
Mechanical Effects of Increases in the Load Applied in Uniaxial and Biaxial Tensile Testing: Part i. calf Pericardium
,”
J. Mater. Sci.: Mater. Med.
,
13
(
4
), pp.
381
388
.10.1023/A:1014388618649
10.
Caballero
,
A.
,
Sulejmani
,
F.
,
Martin
,
C.
,
Pham
,
T.
, and
Sun
,
W.
,
2017
, “
Evaluation of Transcatheter Heart Valve Biomaterials: Biomechanical Characterization of Bovine and Porcine Pericardium
,”
J. Mech. Behav. Biomed. Mater.
,
75
(
11
), pp.
486
494
.10.1016/j.jmbbm.2017.08.013
11.
Liao
,
J.
,
Yang
,
L.
,
Grashow
,
J.
, and
Sacks
,
M. S.
,
2005
, “
Molecular Orientation of Collagen in Intact Planar Connective Tissues Under Biaxial Stretch
,”
Acta Biomater.
,
1
(
1
), pp.
45
54
.10.1016/j.actbio.2004.09.007
12.
Sacks
,
M. S.
,
Chuong
,
C.
, and
More
,
R.
,
1994
, “
Collagen Fiber Architecture of Bovine Pericardium
,”
ASAIO J
., 40(3), pp. M632–M637. 10.1097/00002480-199407000-00075
13.
Labrosse
,
M. R.
,
Jafar
,
R.
,
Ngu
,
J.
, and
Boodhwani
,
M.
,
2016
, “
Planar Biaxial Testing of Heart Valve Cusp Replacement Biomaterials: Experiments, Theory and Material Constants
,”
Acta Biomater.
,
45
(
11
), pp.
303
320
.10.1016/j.actbio.2016.08.036
14.
Cavinato
,
C.
,
Helfenstein-Didier
,
C.
,
Olivier
,
T.
,
Du Roscoat
,
S. R.
,
Laroche
,
N.
, and
Badel
,
P.
,
2017
, “
Biaxial Loading of Arterial Tissues With 3D in Situ Observations of Adventitia Fibrous Microstructure: A Method Coupling Multi-Photon Confocal Microscopy and Bulge Inflation Test
,”
J. Mech. Behav. Biomed. Mater.
,
74
(
10
), pp.
488
498
.10.1016/j.jmbbm.2017.07.022
15.
Jayyosi
,
C.
,
Coret
,
M.
, and
Bruyère-Garnier
,
K.
,
2016
, “
Characterizing Liver Capsule Microstructure Via in Situ Bulge Test Coupled With Multiphoton Imaging
,”
J. Mech. Behav. Biomed. Mater.
,
54
(
2
), pp.
229
243
.10.1016/j.jmbbm.2015.09.031
16.
Whelan
,
A.
,
O'Brien
,
G.
,
Szagdaj
,
A.
,
O'Reilly
,
D.
, and
Lally
,
C.
,
2021
, “
Investigation Into Early Stage Fatigue-Damage Accumulation in Glutaraldehyde-Fixed Bovine Pericardium Using a Novel Equibiaxial Bulge Inflation System
,”
J. Mech. Behav. Biomed. Mater.
,
121
, p.
104588
.10.1016/j.jmbbm.2021.104588
17.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Biomechanics of Collagen-Based Tissue Equivalents
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
10
18
.10.1109/MEMB.2009.932486
18.
Boyce
,
B. L.
,
Grazier
,
J. M.
,
Jones
,
R. E.
, and
Nguyen
,
T. D.
,
2008
, “
Full-Field Deformation of Bovine Cornea Under Constrained Inflation Conditions
,”
Biomaterials
,
29
(
28
), pp.
3896
3904
.10.1016/j.biomaterials.2008.06.011
19.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
20.
Witzenburg
,
C. M.
, and
Barocas
,
V. H.
,
2016
, “
A Nonlinear Anisotropic Inverse Method for Computational Dissection of Inhomogeneous Planar Tissues
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
15
), pp.
1630
1646
.10.1080/10255842.2016.1176154
21.
Sutton
,
M. A.
,
Orteu
,
J.-J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer
, New York.
22.
Pyne
,
J. D.
,
Genovese
,
K.
,
Casaletto
,
L.
, and
Vande Geest
,
J. P.
,
2014
, “
Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation
,”
ASME J. Biomech. Eng.
,
136
(
2
), pp.
02
021002
.10.1115/1.4026224
23.
Solav
,
D.
,
Moerman
,
K. M.
,
Jaeger
,
A. M.
,
Genovese
,
K.
, and
Herr
,
H. M.
,
2018
, “
MultiDIC: An Open-Source Toolbox for Multi-View 3D Digital Image Correlation
,”
IEEE Access
,
6
, pp.
30520
30535
.10.1109/ACCESS.2018.2843725
24.
Murdock
,
K.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
Characterization of Mechanical Properties of Pericardium Tissue Using Planar Biaxial Tension and Flexural Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
77
(
1
), pp.
148
156
.10.1016/j.jmbbm.2017.08.039
You do not currently have access to this content.