Abstract

The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.

References

1.
Fan
,
T. J.
,
Xia
,
L.
, and
Han
,
Y. R.
,
2001
, “
Mitochondrion and Apoptosis
,”
Acta Biochim. Biophys. Sin.
,
33
(
1
), pp.
7
12
.
2.
Picard
,
M.
, and
McEwen
,
B. S.
,
2018
, “
Psychological Stress and Mitochondria: A Systematic Review
,”
Psychosom. Med.
,
80
(
2
), pp.
141
153
.10.1097/PSY.0000000000000545
3.
Mogre
,
S. S.
,
Brown
,
A. I.
, and
Koslover
,
E. F.
,
2020
, “
Getting Around the Cell: Physical Transport in the Intracellular World
,”
Phys. Biol.
,
17
(
6
), p.
061003
.10.1088/1478-3975/aba5e5
4.
Melkov
,
A.
, and
Abdu
,
U.
,
2018
, “
Regulation of Long-Distance Transport of Mitochondria Along Microtubules
,”
Cell. Mol. Life Sci.
,
75
(
2
), pp.
163
176
.10.1007/s00018-017-2590-1
5.
Kruppa
,
A. J.
, and
Buss
,
F.
,
2021
, “
Motor Proteins at the Mitochondria Cytoskeleton Interface
,”
J. Cell Sci.
,
134
(
7
), p.
jcs226084
.10.1242/jcs.226084
6.
Narayanareddy
,
B. R. J.
,
Vartiainen
,
S.
,
Hariri
,
N.
,
O'Dowd
,
D. K.
, and
Gross
,
S. P.
,
2014
, “
A Biophysical Analysis of Mitochondrial Movement: Differences Between Transport in Neuronal Cell Bodies Versus Processes
,”
Traffic
,
15
(
7
), pp.
762
771
.10.1111/tra.12171
7.
Hollenbeck
,
P. J.
, and
Saxton
,
W. M.
,
2005
, “
The Axonal Transport of Mitochondria
,”
J. Cell Sci.
,
118
(
23
), pp.
5411
5419
.10.1242/jcs.02745
8.
Lees
,
R. M.
,
Johnson
,
J. D.
, and
Ashby
,
M. C.
,
2020
, “
Presynaptic Boutons That Contain Mitochondria Are More Stable
,”
Front. Synaptic Neurosci.
,
11
, p.
37
.10.3389/fnsyn.2019.00037
9.
Lewis
,
T. L.
, Jr.
,
Turi
,
G. F.
,
Kwon
,
S.-K.
,
Losonczy
,
A.
, and
Polleux
,
F.
,
2016
, “
Progressive Decrease of Mitochondrial Motility During Maturation of Cortical Axons In Vitro and In Vivo
,”
Curr. Biol.
,
26
(
19
), pp.
2602
2608
.10.1016/j.cub.2016.07.064
10.
Harris
,
J. J.
,
Jolivet
,
R.
, and
Attwell
,
D.
,
2012
, “
Synaptic Energy Use and Supply
,”
Neuron
,
75
(
5
), pp.
762
777
.10.1016/j.neuron.2012.08.019
11.
Obashi
,
K.
, and
Okabe
,
S.
,
2013
, “
Regulation of Mitochondrial Dynamics and Distribution by Synapse Position and Neuronal Activity in the Axon
,”
Eur. J. Neurosci.
,
38
(
3
), pp.
2350
2363
.10.1111/ejn.12263
12.
Shepherd
,
G.
, and
Harris
,
K. M.
,
1998
, “
Three-Dimensional Structure and Composition of CA3 -> CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization
,”
J. Neurosci.
,
18
(
20
), pp.
8300
8310
.10.1523/JNEUROSCI.18-20-08300.1998
13.
Chang
,
D. T. W.
,
Honick
,
A. S.
, and
Reynolds
,
I. J.
,
2006
, “
Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons
,”
J. Neurosci.
,
26
(
26
), pp.
7035
7045
.10.1523/JNEUROSCI.1012-06.2006
14.
Yang
,
S.
,
Park
,
J. H.
, and
Lu
,
H.
,
2023
, “
Axonal Energy Metabolism, and the Effects in Aging and Neurodegenerative Diseases
,”
Mol. Neurodegener.
,
18
(
1
), p.
49
.10.1186/s13024-023-00634-3
15.
Pathak
,
D.
,
Shields
,
L. Y.
,
Mendelsohn
,
B. A.
,
Haddad
,
D.
,
Lin
,
W.
,
Gerencser
,
A. A.
,
Kim
,
H.
,
Brand
,
M. D.
,
Edwards
,
R. H.
, and
Nakamura
,
K.
,
2015
, “
The Role of Mitochondrially Derived ATP in Synaptic Vesicle Recycling
,”
J. Biol. Chem.
,
290
(
37
), pp.
22325
22336
.10.1074/jbc.M115.656405
16.
Engl
,
E.
, and
Attwell
,
D.
,
2015
, “
Non-Signalling Energy Use in the Brain
,”
J. Physiol.-London
,
593
(
16
), pp.
3417
3429
.10.1113/jphysiol.2014.282517
17.
Jolivet
,
R.
,
Coggan
,
J. S.
,
Allaman
,
I.
, and
Magistretti
,
P. J.
,
2015
, “
Multi-Timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble
,”
PLOS Comput. Biol.
,
11
(
2
), p.
e1004036
.10.1371/journal.pcbi.1004036
18.
Joshi
,
S. N.
,
Joshi
,
A. N.
, and
Joshi
,
N. D.
,
2023
, “
Interplay Between Biochemical Processes and Network Properties Generates Neuronal Up and Down States at the Tripartite Synapse
,”
Phys. Rev. E
,
107
(
2
), p.
024415
.10.1103/PhysRevE.107.024415
19.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2023
, “
ATP Diffusional Gradients Are Sufficient to Maintain Bioenergetic Homeostasis in Synaptic Boutons Lacking Mitochondria
,”
Int. J. Numer. Methods Biomed. Eng.
,
39
(
5
), p.
e3696
.10.1002/cnm.3696
20.
Barraza
,
D.
,
Kita
,
H.
, and
Wilson
,
C. J.
,
2009
, “
Slow Spike Frequency Adaptation in Neurons of the Rat Subthalamic Nucleus
,”
J. Neurophysiol.
,
102
(
6
), pp.
3689
3697
.10.1152/jn.00759.2009
21.
Weinrich
,
T. W.
,
Kam
,
J. H.
,
Ferrara
,
B. T.
,
Thompson
,
E. P.
,
Mitrofanis
,
J.
, and
Jeffery
,
G.
,
2019
, “
A Day in the Life of Mitochondria Reveals Shifting Workloads
,”
Sci. Rep.
,
9
(
1
), p.
13898
.10.1038/s41598-019-48383-y
22.
van Beek
,
J. H.
, and
Westerhof
,
N.
,
1990
, “
Response Time of Mitochondrial Oxygen Consumption Following Stepwise Changes in Cardiac Energy Demand
,”
Adv. Exp. Med. Biol.
,
277
, pp.
415
423
.10.1007/978-1-4684-8181-5
23.
Picard
,
M.
,
McEwen
,
B. S.
,
Epel
,
E. S.
, and
Sandi
,
C.
,
2018
, “
An Energetic View of Stress: Focus on Mitochondria
,”
Front. Neuroendocrinol.
,
49
, pp.
72
85
.10.1016/j.yfrne.2018.01.001
24.
Calbet
,
J. A. L.
,
Martín-Rodríguez
,
S.
,
Martin-Rincon
,
M.
, and
Morales-Alamo
,
D.
,
2020
, “
An Integrative Approach to the Regulation of Mitochondrial Respiration During Exercise: Focus on High-Intensity Exercise
,”
Redox Biol.
,
35
, p.
101478
.10.1016/j.redox.2020.101478
25.
Pizzorno
,
J.
,
2014
, “
Mitochondria-Fundamental to Life and Health
,”
Integr. Med. (Encinitas, Calif.)
,
13
(
2
), pp.
8
15
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684129/
26.
Matsumoto
,
N.
,
Hori
,
I.
,
Kajita
,
M. K.
,
Murase
,
T.
,
Nakamura
,
W.
,
Tsuji
,
T.
,
Miyake
,
S.
,
Inatani
,
M.
, and
Konishi
,
Y.
,
2022
, “
Intermitochondrial Signaling Regulates the Uniform Distribution of Stationary Mitochondria in Axons
,”
Mol. Cell. Neurosci.
,
119
, p.
103704
.10.1016/j.mcn.2022.103704
27.
Bowen
,
W. J.
, and
Martin
,
H. L.
,
1964
, “
The Diffusion of Adenosine Triphosphate Through Aqueous Solutions
,”
Arch. Biochem. Biophys.
,
107
(
1
), pp.
30
36
.10.1016/0003-9861(64)90265-6
28.
Macdonald
,
C. L.
,
Yu
,
D.
, and
Buibas
,
M.
,
2008
, “
Diffusion Modeling of ATP Signaling Suggests a Partially Regenerative Mechanism Underlies Astrocyte Intercellular Calcium Waves
,”
Front. Neuroeng.
,
1
, p.
1
.10.3389/neuro.16.001.2008
29.
Wibom
,
R.
, and
Hultman
,
E.
,
1990
, “
ATP Production-Rate in Mitochondria Isolated From Microsamples of Human Muscle
,”
Am. J. Physiol.
,
259
(
2
), pp.
E204
E209
.10.1152/ajpendo.1990.259.2.E204
30.
Fuchs
,
P.
,
Rugen
,
N.
,
Carrie
,
C.
,
Elsässer
,
M.
,
Finkemeier
,
I.
,
Giese
,
J.
,
Hildebrandt
,
T. M.
, et al.,
2020
, “
Single Organelle Function and Organization as Estimated From Arabidopsis Mitochondrial Proteomics
,”
Plant J.
,
101
(
2
), pp.
420
441
.10.1111/tpj.14534
31.
Willingham
,
T. B.
,
Ajayi
,
P. T.
, and
Glancy
,
B.
,
2021
, “
Subcellular Specialization of Mitochondrial Form and Function in Skeletal Muscle Cells
,”
Front. Cell Dev. Biol.
,
9
, p.
757305
.10.3389/fcell.2021.757305
32.
Trushina
,
E.
,
2016
, “
A Shape Shifting Organelle: Unusual Mitochondrial Phenotype Determined With Three-Dimensional Electron Microscopy Reconstruction
,”
Neural Regener. Res.
,
11
(
6
), pp.
900
901
.10.4103/1673-5374.184477
33.
Agrawal
,
A.
, and
Koslover
,
E. F.
,
2021
, “
Optimizing Mitochondrial Maintenance in Extended Neuronal Projections
,”
PLOS Comput. Biol.
,
17
(
6
), p.
e1009073
.10.1371/journal.pcbi.1009073
34.
Lennie
,
P.
,
2003
, “
The Cost of Cortical Computation
,”
Curr. Biol.
,
13
(
6
), pp.
493
497
.10.1016/S0960-9822(03)00135-0
35.
Rangaraju
,
V.
,
Calloway
,
N.
, and
Ryan
,
T. A.
,
2014
, “
Activity-Driven Local ATP Synthesis Is Required for Synaptic Function
,”
Cell
,
156
(
4
), pp.
825
835
.10.1016/j.cell.2013.12.042
36.
Kuznetsov
,
A. V.
,
2003
, “
Limitation of the Single-Domain Numerical Approach: Comparisons of Analytical and Numerical Solutions for a Forced Convection Heat Transfer Problem in a Composite Duct
,”
Comput. Assisted Mech. Eng. Sci.
,
10
, pp.
33
43
.https://www.researchgate.net/publication/266167091_Limitation_of_the_singledomain_numerical_approach_Comparisons_of_analytical_and_numerical_solutions_for_a_forced_convection_heat_transfer_problem_in_a_composite_duct
37.
Zala
,
D.
,
Hinckelmann
,
M.-V.
,
Yu
,
H.
,
Lyra da Cunha
,
M. M.
,
Liot
,
G.
,
Cordelières
,
F. P.
,
Marco
,
S.
, and
Saudou
,
F.
,
2013
, “
Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport
,”
Cell
,
152
(
3
), pp.
479
491
.10.1016/j.cell.2012.12.029
You do not currently have access to this content.