Abstract

A variety of total knee arthroplasty (TKA) designs offer increased congruency bearing options, primarily to compensate for a loss of posterior cruciate ligament (PCL) function. However, their efficacy in providing sufficient stability under different circumstances requires further investigation. The preclinical testing of prosthesis components on joint motion simulators is useful for quantifying how design changes affect joint stability. However, this type of testing may not be clinically relevant because surrounding ligaments are either ignored or greatly simplified. This study aimed to assess the kinematics and stability of TKA joints during various motions using condylar-stabilized (CS) bearings without a PCL versus cruciate-retaining (CR) bearings with an intact PCL. TKA prosthetic components were tested on a joint motion simulator while being stabilized with five different sets of specimen-specific virtual ligament envelopes. In comparison to CR knees, CS knees without a PCL exhibited a greater amount of posterior tibial displacement laxity, with a mean increase of 2.7±2.1 mm (p = 0.03). Additionally, significant differences were observed in the anterior–posterior kinematics of the knee joint during activities of daily living (ADL) between the two designs. These results were consistent with previous cadaveric investigations, which indicated that CS knees without a PCL are less resistant to posterior tibial displacement than CR knees with one. This study employing virtual ligaments confirms previous findings that the raised anterior lip of some CS bearings may not completely compensate for the absence of the PCL; however, as both studies used reduced joint contact forces, the contributions of this design feature may be attenuated.

References

1.
Scott
,
D. F.
,
2018
, “
Prospective Randomized Comparison of Posterior-Stabilized Versus Condylar-Stabilized Total Knee Arthroplasty: Final Report of a Five-Year Study
,”
J. Arthroplasty
,
33
(
5
), pp.
1384
1388
.10.1016/j.arth.2017.11.037
2.
Sur
,
Y.-J.
,
Koh
,
I.-J.
,
Park
,
S.-W.
,
Kim
,
H.-J.
, and
In
,
Y.
,
2015
, “
Condylar-Stabilizing Tibial Inserts Do Not Restore Anteroposterior Stability After Total Knee Arthroplasty
,”
J. Arthroplasty
,
30
(
4
), pp.
587
591
.10.1016/j.arth.2014.11.018
3.
Song
,
E.-K.
,
Lim
,
H.-A.
,
Joo
,
S.-D.
,
Kim
,
S.-K.
,
Lee
,
K.-B.
, and
Seon
,
J.-K.
,
2017
, “
Total Knee Arthroplasty Using Ultra-Congruent Inserts Can Provide Similar Stability and Function Compared With Cruciate-Retaining Total Knee Arthroplasty
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
25
(
11
), pp.
3530
3535
.10.1007/s00167-017-4553-3
4.
Bae
,
J.-H.
,
Yoon
,
J.-R.
,
Sung
,
J.-H.
, and
Shin
,
Y.-S.
,
2018
, “
Posterior-Stabilized Inserts Are Preferable to Cruciate-Substituting Ultracongruent Inserts Due to More Favourable Kinematics and Stability
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
26
(
11
), pp.
3300
3310
.10.1007/s00167-018-4872-z
5.
Dolan
,
M. M.
,
Kelly
,
N. H.
,
Nguyen
,
J. T.
,
Wright
,
T. M.
, and
Haas
,
S. B.
,
2011
, “
Implant Design Influences Tibial Post Wear Damage in Posterior-Stabilized Knees
,”
Clin. Orthop. Relat. Res.
,
469
(
1
), pp.
160
167
.10.1007/s11999-010-1515-1
6.
Willing
,
R.
,
Moslemian
,
A.
,
Yamomo
,
G.
,
Wood
,
T.
,
Howard
,
J.
, and
Lanting
,
B.
,
2019
, “
Condylar‐Stabilized TKR May Not Fully Compensate for PCL‐Deficiency: An In Vitro Cadaver Study
,”
J. Orthop. Res.®
,
37
(
10
), pp.
2172
2181
.10.1002/jor.24392
7.
Dorr
,
L. D.
,
Ochsner
,
J. L.
,
Gronley
,
J.
, and
Perry
,
J.
,
1988
, “
Functional Comparison of Posterior Cruciate-Retained Versus Cruciate-Sacrificed Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
236
, pp.
36
43
.10.1097/00003086-198811000-00005
8.
Luger
,
E.
,
Sathasivam
,
S.
, and
Walker
,
P. S.
,
1997
, “
Inherent Differences in the Laxity and Stability Between the Intact Knee and Total Knee Replacements
,”
Knee
,
4
(
1
), pp.
7
14
.10.1016/S0968-0160(96)00224-4
9.
Abdel-Jaber
,
S.
,
Belvedere
,
C.
,
Leardini
,
A.
, and
Affatato
,
S.
,
2015
, “
Wear Simulation of Total Knee Prostheses Using Load and Kinematics Waveforms From Stair Climbing
,”
J. Biomech.
,
48
(
14
), pp.
3830
3836
.10.1016/j.jbiomech.2015.09.007
10.
Halloran
,
J.
,
Clary
,
C.
,
Maletsky
,
L.
,
Taylor
,
M.
,
Petrella
,
A.
, and
Rullkoetter
,
P.
,
2010
, “
Verification of Predicted Knee Replacement Kinematics During Simulated Gait in the Kansas Knee Simulator
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081010
.10.1115/1.4001678
11.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
,
2002
, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
,
35
(
2
), pp.
267
275
.10.1016/S0021-9290(01)00179-8
12.
Willing
,
R.
, and
Walker
,
P. S.
,
2018
, “
Measuring the Sensitivity of Total Knee Replacement Kinematics and Laxity to Soft Tissue Imbalances
,”
ASME J. Biomech.
,
77
, pp.
62
68
.10.1016/j.jbiomech.2018.06.019
13.
McKellop
,
H. A.
, and
D'Lima
,
D.
,
2008
, “
How Have Wear Testing and Joint Simulator Studies Helped to Discriminate Among Materials and Designs?
,”
JAAOS J. Am. Acad. Orthop. Surg.
,
16
, pp.
S111
S119
.10.5435/00124635-200800001-00022
14.
Krackow
,
K. A.
, and
Mihalko
,
W. M.
,
1999
, “
The Effect of Medial Release on Flexion and Extension Gaps in Cadaveric Knees: Implications for Soft-Tissue Balancing in Total Knee Arthroplasty
,”
Am. J. Knee Surg.
,
12
(
4
), p.
222
.https://pubmed.ncbi.nlm.nih.gov/10626913/
15.
Tanikawa
,
H.
,
Tada
,
M.
,
Harato
,
K.
,
Okuma
,
K.
, and
Nagura
,
T.
,
2017
, “
Influence of Total Knee Arthroplasty on Patellar Kinematics and Patellofemoral Pressure
,”
J. Arthroplasty
,
32
(
1
), pp.
280
285
.10.1016/j.arth.2016.06.044
16.
Borque
,
K. A.
,
Gold
,
J. E.
,
Incavo
,
S. J.
,
Patel
,
R. M.
,
Ismaily
,
S. E.
, and
Noble
,
P. C.
,
2015
, “
Anteroposterior Knee Stability During Stair Descent
,”
J. Arthroplasty
,
30
(
6
), pp.
1068
1072
.10.1016/j.arth.2015.01.011
17.
Sharifi Kia
,
D.
, and
Willing
,
R.
,
2018
, “
Applying a Hybrid Experimental-Computational Technique to Study Elbow Joint Ligamentous Stabilizers
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061012
.10.1115/1.4039674
18.
Vakili
,
S.
,
Lanting
,
B.
,
Getgood
,
A.
, and
Willing
,
R.
,
2022
, “
Development of Multi-Bundle Virtual Ligaments to Simulate Knee Mechanics After Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
, 145(9), p.
091003
.10.1115/1.4062421
19.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
, 105(2), pp.
136
144
.10.1115/1.3138397
20.
Bergmann
,
G.
,
Bender
,
A.
,
Graichen
,
F.
,
Dymke
,
J.
,
Rohlmann
,
A.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Kutzner
,
I.
,
2014
, “
Standardized Loads Acting in Knee Implants
,”
PLoS One
,
9
(
1
), p.
e86035
.10.1371/journal.pone.0086035
21.
Pataky
,
T. C.
,
2010
, “
Generalized N-Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
,”
J. Biomech.
,
43
(
10
), pp.
1976
1982
.10.1016/j.jbiomech.2010.03.008
22.
Moslemian
,
A.
,
Sidhu
,
R.
,
Roessler
,
P.
,
Wood
,
R.
,
Degen
,
R.
,
Getgood
,
A.
, and
Willing
,
R.
,
2021
, “
Influence of the Posterior Cruciate Ligament on Kinematics of the Knee During Experimentally Simulated Clinical Tests and Activities of Daily Living
,”
J. Biomech.
,
115
, p.
110133
.10.1016/j.jbiomech.2020.110133
23.
Kumagai
,
M.
,
Mizuno
,
Y.
,
Mattessich
,
S. M.
,
Elias
,
J. J.
,
Cosgarea
,
A. J.
, and
Chao
,
E. Y.
,
2002
, “
Posterior Cruciate Ligament Rupture Alters In Vitro Knee Kinematics
,”
Clin. Orthop. Relat. Res.
,
395
, pp.
241
248
.10.1097/00003086-200202000-00029
24.
Harner
,
C. D.
,
Janaushek
,
M. A.
,
Kanamori
,
A.
,
Yagi
,
M.
,
Vogrin
,
T. M.
, and
Woo
,
S. L. Y.
,
2000
, “
Biomechanical Analysis of a Double-Bundle Posterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
28
(
2
), pp.
144
151
.10.1177/03635465000280020201
25.
Kazemi
,
M.
,
Dabiri
,
Y.
, and
Li
,
L.
,
2013
, “
Recent Advances in Computational Mechanics of the Human Knee Joint
,”
Comput. Math. Methods Med.
,
2013
, pp.
1
27
.10.1155/2013/718423
26.
Freed
,
R. D.
,
Simon
,
J. C.
,
Knowlton
,
C. B.
,
Villaseñor
,
D. A. O.
,
Wimmer
,
M. A.
, and
Lundberg
,
H. J.
,
2017
, “
Are Instrumented Knee Forces Representative of a Larger Population of Cruciate-Retaining Total Knee Arthroplasties?
,”
J. Arthroplasty
,
32
(
7
), pp.
2268
2273
.10.1016/j.arth.2017.01.054
27.
ISO
,
2002
, “
Implants for Surgery—Wear of Total Knee‐Joint Prostheses—Part 1: Loading and Displacement Parameters for Wear‐Testing Machines With Load Control and Corresponding Environmental Conditions for Test
,” International Standards Organization (ISO), Geneva, Switzerland, Paper No. ISO 14243.
You do not currently have access to this content.