Abstract

Musculoskeletal models based on inertial motion capture (IMC) and ground reaction force (GRF) prediction hold great potential for field-based risk assessment of manual material handling (MMH). However, previous evaluations have identified inaccuracies in the methodology's estimation of spinal forces, while the accuracy of other key outcome variables is currently unclear. This study evaluated knee, shoulder, and L5–S1 joint reaction forces (JRFs) derived from a musculoskeletal model based on inertial motion capture and GRF prediction against a model based on simultaneously collected optical motion capture (OMC) and force plate measurements. Data from 19 healthy subjects performing lifts with various horizontal locations (HLs), deposit heights (DHs), and asymmetry angles (AAs) were analyzed, and the consistency and absolute agreement of the model estimates statistically compared. Despite varying levels of agreement across tasks and variables, considerable absolute differences were identified for the L5–S1 axial compression (AC) (root-mean-square error (RMSE) = 63.0–94.2%BW) and anteroposterior (AP) shear forces (RMSE = 40.9–80.6%BW) as well as the bilateral knee JRFs (RMSE = 78.9–117%BW). Glenohumeral JRFs and vertical GRFs exhibited the highest overall consistency (r =0.33–0.91, median 0.78) and absolute agreement (RMSE = 7.63–34.9%BW), while the L5–S1 axial compression forces also showed decent consistency (r =0.04–0.89, median 0.80). The findings generally align with prior evaluations, indicating persistent challenges with the accuracy of key outcome variables. While the modeling framework shows promise, further development of the methodology is encouraged to enhance its applicability in ergonomic evaluations.

References

1.
Dempsey
,
P. G.
,
1998
, “
A Critical Review of Biomechanical, Epidemiological, Physiological and Psychophysical Criteria for Designing Manual Materials Handling Tasks
,”
Ergonomics
,
41
(
1
), pp.
73
88
.10.1080/001401398187332
2.
Garg
,
A.
, and
Kapellusch
,
J. M.
,
2009
, “
Applications of Biomechanics for Prevention of Work-Related Musculoskeletal Disorders
,”
Ergonomics
,
52
(
1
), pp.
36
59
.10.1080/00140130802480794
3.
de Kok
,
J.
,
Vroonhof
,
P.
,
Snijders
,
J.
,
Roullis
,
G.
,
Clarke
,
M.
,
Peereboom
,
K.
,
van Dorst
,
P.
, and
Isusi
,
I.
,
2019
,
Work-Related Musculoskeletal Disorders: Prevalence, Costs and Demographics in the EU
,
European Agency for Safety and Health at Work, Publications Office of the European Union
,
Luxembourg
.
4.
Bevan
,
S.
,
2015
, “
Economic Impact of Musculoskeletal Disorders (MSDs) on Work in Europe
,”
Best Pract. Res. Clin. Rheumatol.
,
29
(
3
), pp.
356
373
.10.1016/j.berh.2015.08.002
5.
Russell
,
S. J.
,
Winnemuller
,
L.
,
Camp
,
J. E.
, and
Johnson
,
P. W.
,
2007
, “
Comparing the Results of Five Lifting Analysis Tools
,”
Appl. Ergon.
,
38
(
1
), pp.
91
97
.10.1016/j.apergo.2005.12.006
6.
David
,
G. C.
,
2005
, “
Ergonomic Methods for Assessing Exposure to Risk Factors for Work-Related Musculoskeletal Disorders
,”
Occup. Med.
,
55
(
3
), pp.
190
199
.10.1093/occmed/kqi082
7.
Harari
,
Y.
,
Bechar
,
A.
, and
Riemer
,
R.
,
2020
, “
Workers' Biomechanical Loads and Kinematics During Multiple-Task Manual Material Handling
,”
Appl. Ergon.
,
83
, p.
102985
.10.1016/j.apergo.2019.102985
8.
Faber
,
G. S.
,
Kingma
,
I.
,
Chang
,
C. C.
,
Dennerlein
,
J. T.
, and
van Dieën
,
J. H.
,
2020
, “
Validation of a Wearable System for 3D Ambulatory L5/S1 Moment Assessment During Manual Lifting Using Instrumented Shoes and an Inertial Sensor Suit
,”
J. Biomech.
,
102
, p.
109671
.10.1016/j.jbiomech.2020.109671
9.
Skals
,
S.
,
Bláfoss
,
R.
,
Andersen
,
L. L.
,
Andersen
,
M. S.
, and
de Zee
,
M.
,
2021
, “
Manual Material Handling in the Supermarket Sector. Part 2: Knee, Spine and Shoulder Joint Reaction Forces
,”
Appl. Ergon.
,
92
, p.
103345
.10.1016/j.apergo.2020.103345
10.
Beaucage-Gauvreau
,
E.
,
Robertson
,
W. S. P.
,
Brandon
,
S. C. E.
,
Fraser
,
R.
,
Freeman
,
B. J. C.
,
Graham
,
R. B.
,
Thewlis
,
D.
, and
Jones
,
C. F.
,
2019
, “
Validation of an OpenSim Full-Body Model With Detailed Lumbar Spine for Estimating Lower Lumbar Spine Loads During Symmetric and Asymmetric Lifting Tasks
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
5
), pp.
451
464
.10.1080/10255842.2018.1564819
11.
Kessels
,
I.
,
Koopman
,
B.
,
Verdonschot
,
N.
,
Marra
,
M.
, and
Gijsbertse
,
K.
,
2021
, “
The Added Value of Musculoskeletal Simulation for the Study of Physical Performance in Military Tasks
,”
Sensors
,
21
(
16
), p.
5588
.10.3390/s21165588
12.
Wang
,
S.
,
Feng
,
C.
,
Chen
,
X.
,
Shan
,
M.
, and
Niu
,
W.
,
2023
, “
A Biomechanical Evaluation of Firefighters' Musculoskeletal Loads When Carrying Self-Contained Breathing Apparatus in Walking and Running
,”
J. Saf. Res.
,
87
, pp.
1
14
.10.1016/j.jsr.2023.08.004
13.
Wang
,
S.
, and
Wang
,
Y.
,
2022
, “
Musculoskeletal Model for Assessing Firefighters' Internal Forces and Occupational Musculoskeletal Disorders During Self-Contained Breathing Apparatus Carriage
,”
Saf. Health at Work
,
13
(
3
), pp.
315
325
.10.1016/j.shaw.2022.03.009
14.
Seiferheld
,
B. E.
,
Frost
,
J.
,
Krog
,
M.
,
Skals
,
S.
, and
Andersen
,
M. S.
,
2022
, “
Biomechanical Investigation of a Passive Upper-Extremity Exoskeleton for Manual Material Handling—A Computational Parameter Study and Modelling Approach
,”
Int. J. Hum. Factors Modell. Simul.
,
7
(
3/4
), pp.
275
300
.10.1504/IJHFMS.2022.124304
15.
Kazemi
,
Z.
,
Park
,
J.-H.
, and
Srinivasan
,
D.
,
2023
, “
Differences in Kinematics and Resulting Lumbar Spinal Forces During Repetitive Lifting Tasks: Simulation Versus Estimation of the Effects of Wearing a Back-Support Exoskeleton
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
67
(
1
), pp.
842
844
.10.1177/21695067231192525
16.
Madinei
,
S.
, and
Nussbaum
,
M. A.
,
2023
, “
Estimating Lumbar Spine Loading When Using Back-Support Exoskeletons in Lifting Tasks
,”
J. Biomech.
,
147
, p.
111439
.10.1016/j.jbiomech.2023.111439
17.
Fritzsche
,
L.
,
Galibarov
,
P. E.
,
Gärtner
,
C.
,
Bornmann
,
J.
,
Damsgaard
,
M.
,
Wall
,
R.
,
Schirrmeister
,
B.
, et al.,
2021
, “
Assessing the Efficiency of Exoskeletons in Physical Strain Reduction by Biomechanical Simulation With AnyBody Modeling System
,”
Wearable Technol.
,
2
, p.
e6
.10.1017/wtc.2021.5
18.
Kong
,
Y.-K.
,
Choi
,
K.-H.
,
Cho
,
M.-U.
,
Kim
,
S.-Y.
,
Kim
,
M.-J.
,
Shim
,
J.-W.
,
Park
,
S.-S.
, et al.,
2022
, “
Ergonomic Assessment of a Lower-Limb Exoskeleton Through Electromyography and Anybody Modeling System
,”
Int. J. Environ. Res. Public Health
,
19
(
13
), p.
8088
.10.3390/ijerph19138088
19.
Lee
,
C. J.
, and
Lee
,
J. K.
,
2022
, “
Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review
,”
Sensors
,
22
(
7
), p.
2507
.10.3390/s22072507
20.
Karatsidis
,
A.
,
Jung
,
M.
,
Schepers
,
H. M.
,
Bellusci
,
G.
,
de Zee
,
M.
,
Veltink
,
P. H.
, and
Andersen
,
M. S.
,
2019
, “
Musculoskeletal Model-Based Inverse Dynamic Analysis Under Ambulatory Conditions Using Inertial Motion Capture
,”
Med. Eng. Phys.
,
65
, pp.
68
77
.10.1016/j.medengphy.2018.12.021
21.
Konrath
,
J.
,
Karatsidis
,
A.
,
Schepers
,
H.
,
Bellusci
,
G.
,
de Zee
,
M.
, and
Andersen
,
M. S.
,
2019
, “
Estimation of the Knee Adduction Moment and Joint Contact Force During Daily Living Activities Using Inertial Motion Capture
,”
Sensors
,
19
(
7
), p.
1681
.10.3390/s19071681
22.
Larsen
,
F. G.
,
Svenningsen
,
F. P.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Skals
,
S.
,
2020
, “
Estimation of Spinal Loading During Manual Materials Handling Using Inertial Motion Capture
,”
Ann. Biomed. Eng.
,
48
(
2
), pp.
805
821
.10.1007/s10439-019-02409-8
23.
Nail-Ulloa
,
I.
,
Zabala
,
M.
,
Sesek
,
R.
,
Chen
,
H.
,
Schall
,
M. C.
, and
Gallagher
,
S.
,
2024
, “
Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems
,”
Sensors
,
24
(
6
), p.
1941
.10.3390/s24061941
24.
Skals
,
S.
,
Bláfoss
,
R.
,
de Zee
,
M.
,
Andersen
,
L. L.
, and
Andersen
,
M. S.
,
2021
, “
Effects of Load Mass and Position on the Dynamic Loading of the Knees, Shoulders and Lumbar Spine During Lifting: A Musculoskeletal Modelling Approach
,”
Appl. Ergon.
,
96
, p.
103491
.10.1016/j.apergo.2021.103491
25.
Roetenberg
,
D.
,
Luinge
,
H.
, and
Slycke
,
P.
,
2013
, “
Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors
,”
Xsens Technologies B.V
., Enschede, The Netherlands,
Report No. 1.
26.
Lund
,
M. E.
,
Chander
,
D. S.
,
Galibarov
,
P. E.
,
Tørholm
,
S.
, and
Engelund
,
B.
,
2023
, “
The AnyBody Managed Model Repository (AMMR) (2.4.4)
,” AnyBody Technology A/S, Aalborg, Denmark.
27.
Carbone
,
V.
,
Fluit
,
R.
,
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Janssen
,
D.
,
Damsgaard
,
M.
,
Vigneron
,
L.
,
Feilkas
,
T.
,
Koopman
,
H. F. J. M.
, and
Verdonschot
,
N.
,
2015
, “
TLEM 2.0—A Comprehensive Musculoskeletal Geometry Dataset for Subject-Specific Modeling of Lower Extremity
,”
J. Biomech.
,
48
(
5
), pp.
734
741
.10.1016/j.jbiomech.2014.12.034
28.
De Pieri
,
E.
,
Lund
,
M. E.
,
Gopalakrishnan
,
A.
,
Rasmussen
,
K. P.
,
Lunn
,
D. E.
, and
Ferguson
,
S. J.
,
2018
, “
Refining Muscle Geometry and Wrapping in the TLEM 2 Model for Improved Hip Contact Force Prediction
,”
PLoS One
,
13
(
9
), p.
e0204109
.10.1371/journal.pone.0204109
29.
Hansen
,
L.
,
de Zee
,
M.
,
Rasmussen
,
J.
,
Andersen
,
T. B.
,
Wong
,
C.
, and
Simonsen
,
E. B.
,
2006
, “
Anatomy and Biomechanics of the Back Muscles in the Lumbar Spine With Reference to Biomechanical Modeling
,”
Spine
,
31
(
17
), pp.
1888
1899
.10.1097/01.brs.0000229232.66090.58
30.
de Zee
,
M.
,
Hansen
,
L.
,
Wong
,
C.
,
Rasmussen
,
J.
, and
Simonsen
,
E. B.
,
2007
, “
A Generic Detailed Rigid-Body Lumbar Spine Model
,”
J. Biomech.
,
40
(
6
), pp.
1219
1227
.10.1016/j.jbiomech.2006.05.030
31.
Han
,
K.-S.
,
Zander
,
T.
,
Taylor
,
W. R.
, and
Rohlmann
,
A.
,
2012
, “
An Enhanced and Validated Generic Thoraco-Lumbar Spine Model for Prediction of Muscle Forces
,”
Med. Eng. Phys.
,
34
(
6
), pp.
709
716
.10.1016/j.medengphy.2011.09.014
32.
van der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Pronk
,
G. M.
,
van der Woude
,
L. H. V.
, and
Rozenda
,
R. H.
,
1992
, “
Geometry Parameters for Musculoskeletal Modelling of the Shoulder System
,”
J. Biomech.
,
25
(
2
), pp.
129
144
.10.1016/0021-9290(92)90270-B
33.
Veeger
,
H. E. J.
,
Yu
,
B.
,
An
,
K.-N.
, and
Rozendal
,
R. H.
,
1997
, “
Parameters for Modeling the Upper Extremity
,”
J. Biomech.
,
30
(
6
), pp.
647
652
.10.1016/S0021-9290(97)00011-0
34.
Veeger
,
H. E. J.
,
van der Helm
,
F. C. T.
,
van der Woude
,
L. H. V.
,
Pronk
,
G. M.
, and
Rozendal
,
R. H.
,
1991
, “
Inertia and Muscle Contraction Parameters for Musculoskeletal Modelling of the Shoulder Mechanism
,”
J. Biomech.
,
24
(
7
), pp.
615
629
.10.1016/0021-9290(91)90294-W
35.
Strzelczak
,
M.
,
2021
, “
Development of a Shoulder Musculoskeletal Model to Assess the Impact of Scapular Morphology on Glenohumeral Biomechanics
,”
Ph.D. thesis
,
École de technologie supérieure
,
Montreal, QC, Canada
.https://espace.etsmtl.ca/id/eprint/2958/1/STRZELCZAK_Marta.pdf
36.
Rasmussen
,
J.
,
de Zee
,
M.
,
Damsgaard
,
M.
,
Christensen
,
S. T.
,
Marek
,
C.
, and
Siebertz
,
K.
,
2005
, “
A General Method for Scaling Musculo-Skeletal Models
,”
Tenth International Symposium on Computer Simulation in Biomechanics
,
Case Western Reserve University
,
Cleveland, OH
, July 28–30.https://www.researchgate.net/publication/233782949_A_General_Method_for_Scaling_Musculo-Skeletal_Models
37.
Winter
,
D.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
Wiley
,
Hoboken, NJ
.
38.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.10.1080/10255840802459412
39.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.10.1080/10255840903067080
40.
Skals
,
S.
,
Rasmussen
,
K. P.
,
Bendtsen
,
K. M.
,
Yang
,
J.
, and
Andersen
,
M. S.
,
2017
, “
A Musculoskeletal Model Driven by Dual Microsoft Kinect Sensor Data
,”
Multibody Syst. Dyn.
,
41
(
4
), pp.
297
316
.10.1007/s11044-017-9573-8
41.
Fluit
,
R.
,
Andersen
,
M. S.
,
Kolk
,
S.
,
Verdonschot
,
N.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Prediction of Ground Reaction Forces and Moments During Various Activities of Daily Living
,”
J. Biomech.
,
47
(
10
), pp.
2321
2329
.10.1016/j.jbiomech.2014.04.030
42.
Skals
,
S.
,
Jung
,
M.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Prediction of Ground Reaction Forces and Moments During Sports-Related Movements
,”
Multibody Syst. Dyn.
,
39
(
3
), pp.
175
195
.10.1007/s11044-016-9537-4
43.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
44.
Frankenfield
,
D. C.
,
Rowe
,
W. A.
,
Cooney
,
R. N.
,
Smith
,
J. S.
, and
Becker
,
D.
,
2001
, “
Limits of Body Mass Index to Detect Obesity and Predict Body Composition
,”
Nutrition
,
17
(
1
), pp.
26
30
.10.1016/S0899-9007(00)00471-8
45.
Bland
,
J. M.
, and
Altman
,
D. G.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurements
,”
Lancet
,
327
(
8476
), pp.
307
310
.10.1016/S0140-6736(86)90837-8
46.
Rik
,
2024
, “
BlandAltmanPlot v. 1.2.1
,” GitHub, CA, accessed Nov. 14, 2024, https://github.com/thrynae/BlandAltmanPlot/releases/tag/v1.2.1
47.
Taylor
,
R.
,
1990
, “
Interpretation of the Correlation Coefficient: A Basic Review
,”
J. Diagn. Med. Sonogr.
,
6
(
1
), pp.
35
39
.10.1177/875647939000600106
48.
McGill
,
S. M.
,
Norman
,
R. W.
,
Yingling
,
V. R.
,
Wells
,
R. P.
, and
Neumann
,
P.
,
1998
, “
Shear Happens! Suggested Guidelines for Ergonomists to Reduce the Risk of Low Back Injury From Shear Loading
,” The 30th Annual Conference of the Human Factors Association of Canada (
HFAC
),
Mississauga, ON, Canada
, Oct. 19–22, pp.
157
161
.https://www.researchgate.net/profile/W-Neumann/publication/268298574_Shear_Happens_Suggested_guidelines_for_ergonomists_to_reduce_the_risk_of_low_back_injury_from_shear_loading/links/54d4f76d0cf246475806b125/Shear-Happens-Suggested-guidelines-for-ergonomists-to-reduce-the-risk-of-low-back-injury-from-shear-loading.pdf
49.
Waters
,
T. R.
,
Putz-Anderson
,
V.
,
Garg
,
A.
, and
Fine
,
L. J.
,
1993
, “
Revised NIOSH Equation for the Design and Evaluation of Manual Lifting Tasks
,”
Ergonomics
,
36
(
7
), pp.
749
776
.10.1080/00140139308967940
50.
Center for Ergonomics, The University of Michigan
,
2017
, “
3D Static Strength Prediction ProgramTM Version 7.0.0: User's Manual
,”
Center for Ergonomics, The University of Michigan
, Ann Arbor, MI, accessed Nov. 14, 2024, https://c4e.engin.umich.edu/version-7-0-0-3d-static-strength-prediction-program-software-now-available/
51.
De Looze
,
M. P.
,
Kingma
,
I.
,
Thunnissen
,
W.
,
van Wijk
,
M. J.
, and
Toussaint
,
H. M.
,
1994
, “
The Evaluation of a Practical Biomechanical Model Estimating Lumbar Moments in Occupational Activities
,”
Ergonomics
,
37
(
9
), pp.
1495
1502
.10.1080/00140139408964929
52.
Menzer
,
H. M.
, and
Reiser
, and
R. F.
, II
,
2005
, “
Dynamic Versus Static Analyses of Lifting a Box From the Floor
,”
Biomed. Sci. Instrum.
,
41
, pp.
305
310
.https://pubmed.ncbi.nlm.nih.gov/15850123/
53.
Garg
,
A.
,
Chaffin
,
D. B.
, and
Freivalds
,
A.
,
1982
, “
Biomechanical Stresses From Manual Load Lifting: A Static versus Dynamic Evaluation
,”
A I I E Trans.
,
14
(
4
), pp.
272
281
.10.1080/05695558208975240
54.
Karhu
,
O.
,
Kansi
,
P.
, and
Kuorinka
,
I.
,
1977
, “
Correcting Working Postures in Industry: A Practical Method for Analysis
,”
Appl. Ergon.
,
8
(
4
), pp.
199
201
.10.1016/0003-6870(77)90164-8
55.
Hignett
,
S.
, and
McAtamney
,
L.
,
2000
, “
Rapid Entire Body Assessment (REBA)
,”
Appl. Ergon.
,
31
(
2
), pp.
201
205
.10.1016/S0003-6870(99)00039-3
56.
McGill
,
S. M.
,
1997
, “
The Biomechanics of Low Back Injury: Implications on Current Practice in Industry and the Clinic
,”
J. Biomech.
,
30
(
5
), pp.
465
475
.10.1016/S0021-9290(96)00172-8
57.
Skals
,
S.
,
Bláfoss
,
R.
,
Andersen
,
L. L.
,
de Zee
,
M.
, and
Andersen
,
M. S.
,
2020
, “
Manual Material Handling in the Supermarket Sector: Full Dataset (2.2.)
,” Zenodo.
58.
Gallagher
,
S.
, and
Marras
,
W. S.
,
2012
, “
Tolerance of the Lumbar Spine to Shear: A Review and Recommended Exposure Limits
,”
Clin. Biomech.
,
27
(
10
), pp.
973
978
.10.1016/j.clinbiomech.2012.08.009
59.
Skals
,
S.
,
Bláfoss
,
R.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Andersen
,
L. L.
,
2021
, “
Manual Material Handling in the Supermarket Sector. Part 1: Joint Angles and Muscle Activity of Trapezius Descendens and Erector Spinae Longissimus
,”
Appl. Ergon.
,
92
, p.
103340
.10.1016/j.apergo.2020.103340
60.
Paulich
,
M.
,
Schepers
,
M.
,
Rudigkeit
,
N.
, and
Bellusci
,
G.
,
2018
, “
Xsens MTw Awinda: Miniature Wireless Inertial-Magnetic Motion Tracker for Highly Accurate 3D Kinematic Applications
,” Xsens Technologies B. V., Enschede, The Netherlands, Report No. MW0404P.A.
61.
Robert-Lachaine
,
X.
,
Mecheri
,
H.
,
Larue
,
C.
, and
Plamondon
,
A.
,
2017
, “
Effects of Local Magnetic Field Disturbances on Inertial Measurement Units Accuracy
,”
Appl. Ergon.
,
63
, pp.
123
132
.10.1016/j.apergo.2017.04.011
62.
Movella Technologies B.V
.,
2024
, “
MVN User Manual
,”
Movella Technologies B.V.
, Enschede, The Netherlands, accessed June 24, 2024, https://www.movella.com/hubfs/MVN_User_Manual.pdf?__hstc=233546881.1fa5198786ade7bb8 cace6bc2dd887f0.1663745187069.1670919674447.1670940876901.93&__hssc=233546881.19.1670940876901&__hsfp=700330257
You do not currently have access to this content.