In this work, we perform a systematic numerical investigation of the nonlinear dynamics of an inverted pendulum between lateral rebounding barriers. Three different families of considerably variable attractors—periodic, chaotic, and rest positions with subsequent chattering—are found. All of them are investigated, in detail, and the response scenario is determined by both bifurcation diagrams and behavior charts of single attractors, and overall maps. Attention is focused on local and global bifurcations that lead to the attractor-basin metamorphoses. Numerical results show the extreme richness of the dynamical response of the system, which is deemed to be of interest also in view of prospective mechanical applications.
Issue Section:
Research Papers
1.
Knudsen
, C.
, Feldberg
, D.
, and True
, H.
, 1992, “Bifurcations and Chaos in a Model of a Rolling Railway Wheelset
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428 338
, pp. 455
–469
.2.
Zhao
, X.
, Dankowicz
, H.
, Reddy
, C. K.
, and Nayfeh
, A. H.
, 2004, “Modelling and Simulation Methodology for Impact Microactuators
,” J. Micromech. Microeng.
0960-1317 14
, pp. 775
–784
.3.
Sadek
, M. M.
, 1972, “Impact Dampers for Controllling Vibration in Machine Tools
,” Machinery
, 102
, pp. 152
-161
.4.
Chatterjee
, S.
, Mallik
, A. K.
, and Ghosh
, A.
, 1995, “On Impact Dampers for Non-Linear Vibrating Systems
,” J. Sound Vib.
0022-460X 187
(3
), pp. 403
–420
.5.
Masri
, S. F.
, Miller
, R. K.
, Dehghanyar
, T. J.
, and Caughey
, T. K.
, 1989, “Active Parameter Control of Nonlinear Vibrating Structures
,” ASME J. Appl. Mech.
0021-8936 56
, pp. 656
–666
.6.
Nordmark
, A.
, 1991, “Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,” J. Sound Vib.
0022-460X 145
, pp. 279
–297
.7.
Peterka
, F.
, 1996, “Bifurcations and Transition Phenomena in an Impact Oscillator
,” Chaos, Solitons Fractals
0960-0779 7
, pp. 1635
–1647
.8.
Stephenson
, A.
, 1908, “On Induced Stability
,” Philos. Mag.
0031-8086 15
, pp. 233
-236
.9.
Shaw
, S. W.
, and Rand
, R. H.
, 1989, “The Transition to Chaos in a Simple Mechanical System
,” Int. J. Non-Linear Mech.
0020-7462 24
, pp. 41
–56
.10.
Moore
, D. B.
, and Shaw
, S. W.
, 1990, “The Experimental Response of an Impacting Pendulum System
,” Int. J. Non-Linear Mech.
0020-7462 25
, pp. 1
–16
.11.
Shaw
, S. W.
, 1990, “The Suppression of Chaos in Periodically Forced Oscillators
,” Nonlinear Dynamics in Engineering Systems
, W.
Schiehlen
(ed.), Proc. of IUTAM Symposium, Stuttgart, Germany, August 21-25, 1989
, Springer-Verlag
, Berlin, pp. 289
–296
.12.
Lenci
, S.
, and Rega
, G.
, 1998, “A Procedure for Reducing the Chaotic Response Region in an Impact Mechanical System
,” Nonlinear Dyn.
0924-090X 15
, pp. 391
–409
.13.
Lenci
, S.
, and Rega
, G.
, 1998, “Controlling Nonlinear Dynamics in a Two-Well Impact System. Parts I & II
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274 8
, pp. 2387
–2424
.14.
Lenci
, S.
, and Rega
, G.
, 2000, “Periodic Solutions and Bifurcations in an Impact Inverted Pendulum Under Impulsive Excitation
,” Chaos, Solitons Fractals
0960-0779 11
, pp. 2453
–2472
.15.
Lenci
, S.
, and Rega
, G.
, 2003, “Regular Nonlinear Dynamics and Bifurcations of an Impacting System Under General Periodic Excitation
,” Nonlinear Dyn.
0924-090X 34
, pp. 249
–268
.16.
Budd
, C.
, and Dux
, F.
, 1994, “Chattering and Related Behaviour in Impact Oscillators
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428. 347
, pp. 365
–389
.17.
Wiercigroch
, M.
, and Budak
E.
, 2001, “Sources of Nonlinearities, Chatter Generation and Suppression in Metal Cutting
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428 359
, pp. 663
–693
.18.
Demeio
, L.
, and Lenci
, S.
, 2005, “Asymptotic Analysis of Chattering Oscillations for an Impacting Inverted Pendulum
” (in preparation).19.
Grebogi
, C.
, Ott
, E.
, and Yorke
, J. A.
, 1983, “Crises, Sudden Changes in Chaotic Attractors, and Transient Chaos
,” Physica D
0167-2789 7
, pp. 181
–200
.20.
Sommerer
, J. C.
, and Grebogi
, C.
, 1992, “Determination of Crisis Parameter Values by Direct Observation of Manifold Tangencies
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274 2
, pp. 383
–396
.21.
Rega
, G.
, and Salvatori
, A.
, 1996, “Bifurcation Structure at 1∕3-subharmonic Resonance in an Asymmetric Nonlinear Elastic Oscillator
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274 6
, pp. 1529
–1546
.22.
Grebogi
, C.
, Ott
, E.
, Romeiras
, F.
, and Yorke
, J. A.
, 1987, “Critical Exponents for Crisis-Induced Intermittency
,” Phys. Rev. A
1050-2947 36
, pp. 5365
–5380
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.