In this work, we perform a systematic numerical investigation of the nonlinear dynamics of an inverted pendulum between lateral rebounding barriers. Three different families of considerably variable attractors—periodic, chaotic, and rest positions with subsequent chattering—are found. All of them are investigated, in detail, and the response scenario is determined by both bifurcation diagrams and behavior charts of single attractors, and overall maps. Attention is focused on local and global bifurcations that lead to the attractor-basin metamorphoses. Numerical results show the extreme richness of the dynamical response of the system, which is deemed to be of interest also in view of prospective mechanical applications.

1.
Knudsen
,
C.
,
Feldberg
,
D.
, and
True
,
H.
, 1992, “
Bifurcations and Chaos in a Model of a Rolling Railway Wheelset
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428
338
, pp.
455
469
.
2.
Zhao
,
X.
,
Dankowicz
,
H.
,
Reddy
,
C. K.
, and
Nayfeh
,
A. H.
, 2004, “
Modelling and Simulation Methodology for Impact Microactuators
,”
J. Micromech. Microeng.
0960-1317
14
, pp.
775
784
.
3.
Sadek
,
M. M.
, 1972, “
Impact Dampers for Controllling Vibration in Machine Tools
,”
Machinery
,
102
, pp.
152
-
161
.
4.
Chatterjee
,
S.
,
Mallik
,
A. K.
, and
Ghosh
,
A.
, 1995, “
On Impact Dampers for Non-Linear Vibrating Systems
,”
J. Sound Vib.
0022-460X
187
(
3
), pp.
403
420
.
5.
Masri
,
S. F.
,
Miller
,
R. K.
,
Dehghanyar
,
T. J.
, and
Caughey
,
T. K.
, 1989, “
Active Parameter Control of Nonlinear Vibrating Structures
,”
ASME J. Appl. Mech.
0021-8936
56
, pp.
656
666
.
6.
Nordmark
,
A.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X
145
, pp.
279
297
.
7.
Peterka
,
F.
, 1996, “
Bifurcations and Transition Phenomena in an Impact Oscillator
,”
Chaos, Solitons Fractals
0960-0779
7
, pp.
1635
1647
.
8.
Stephenson
,
A.
, 1908, “
On Induced Stability
,”
Philos. Mag.
0031-8086
15
, pp.
233
-
236
.
9.
Shaw
,
S. W.
, and
Rand
,
R. H.
, 1989, “
The Transition to Chaos in a Simple Mechanical System
,”
Int. J. Non-Linear Mech.
0020-7462
24
, pp.
41
56
.
10.
Moore
,
D. B.
, and
Shaw
,
S. W.
, 1990, “
The Experimental Response of an Impacting Pendulum System
,”
Int. J. Non-Linear Mech.
0020-7462
25
, pp.
1
16
.
11.
Shaw
,
S. W.
, 1990, “
The Suppression of Chaos in Periodically Forced Oscillators
,”
Nonlinear Dynamics in Engineering Systems
,
W.
Schiehlen
(ed.),
Proc. of IUTAM Symposium, Stuttgart, Germany, August 21-25, 1989
,
Springer-Verlag
, Berlin, pp.
289
296
.
12.
Lenci
,
S.
, and
Rega
,
G.
, 1998, “
A Procedure for Reducing the Chaotic Response Region in an Impact Mechanical System
,”
Nonlinear Dyn.
0924-090X
15
, pp.
391
409
.
13.
Lenci
,
S.
, and
Rega
,
G.
, 1998, “
Controlling Nonlinear Dynamics in a Two-Well Impact System. Parts I & II
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274
8
, pp.
2387
2424
.
14.
Lenci
,
S.
, and
Rega
,
G.
, 2000, “
Periodic Solutions and Bifurcations in an Impact Inverted Pendulum Under Impulsive Excitation
,”
Chaos, Solitons Fractals
0960-0779
11
, pp.
2453
2472
.
15.
Lenci
,
S.
, and
Rega
,
G.
, 2003, “
Regular Nonlinear Dynamics and Bifurcations of an Impacting System Under General Periodic Excitation
,”
Nonlinear Dyn.
0924-090X
34
, pp.
249
268
.
16.
Budd
,
C.
, and
Dux
,
F.
, 1994, “
Chattering and Related Behaviour in Impact Oscillators
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428.
347
, pp.
365
389
.
17.
Wiercigroch
,
M.
, and
Budak
E.
, 2001, “
Sources of Nonlinearities, Chatter Generation and Suppression in Metal Cutting
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428
359
, pp.
663
693
.
18.
Demeio
,
L.
, and
Lenci
,
S.
, 2005, “
Asymptotic Analysis of Chattering Oscillations for an Impacting Inverted Pendulum
” (in preparation).
19.
Grebogi
,
C.
,
Ott
,
E.
, and
Yorke
,
J. A.
, 1983, “
Crises, Sudden Changes in Chaotic Attractors, and Transient Chaos
,”
Physica D
0167-2789
7
, pp.
181
200
.
20.
Sommerer
,
J. C.
, and
Grebogi
,
C.
, 1992, “
Determination of Crisis Parameter Values by Direct Observation of Manifold Tangencies
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274
2
, pp.
383
396
.
21.
Rega
,
G.
, and
Salvatori
,
A.
, 1996, “
Bifurcation Structure at 1∕3-subharmonic Resonance in an Asymmetric Nonlinear Elastic Oscillator
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274
6
, pp.
1529
1546
.
22.
Grebogi
,
C.
,
Ott
,
E.
,
Romeiras
,
F.
, and
Yorke
,
J. A.
, 1987, “
Critical Exponents for Crisis-Induced Intermittency
,”
Phys. Rev. A
1050-2947
36
, pp.
5365
5380
.
You do not currently have access to this content.