The time fractional subdiffusion equation (FSDE) as a class of anomalous diffusive systems has obtained by replacing the time derivative in ordinary diffusion by a fractional derivative of order 0<α<1. Since analytically solving this problem is often impossible, proposing numerical methods for its solution has practical importance. In this paper, an efficient and accurate Galerkin method based on the Legendre wavelets (LWs) is proposed for solving this equation. The time fractional derivatives are described in the Riemann–Liouville sense. To do this, we first transform the original subdiffusion problem into an equivalent problem with fractional derivatives in the Caputo sense. The LWs and their fractional operational matrix (FOM) of integration together with the Galerkin method are used to transform the problem under consideration into the corresponding linear system of algebraic equations, which can be simply solved to achieve the solution of the problem. The proposed method is very convenient for solving such problems, since the initial and boundary conditions are taken into account, automatically. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.

References

1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
2.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order
,
Academic Press
,
New York
.
3.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science
,
Amsterdam, The Netherlands
.
4.
Du
,
R.
,
Cao
,
W. R.
, and
Sun
,
Z. Z.
,
2010
, “
A Compact Difference Scheme for the Fractional Diffusion-Wave Equation
,”
Appl. Math. Model.
,
34
(
10
), pp.
2998
3007
.
5.
Liu
,
F.
,
Yang
,
C.
, and
Burrage
,
K.
,
2009
, “
Numerical Method and Analytical Technique of the Modified Anomalous Sub-Diffusion Equation With a Nonlinear Source Term
,”
J. Comput. Appl. Math.
,
231
(
1
), pp.
160
176
.
6.
Yuste
,
S.
, and
Acedo
,
L.
,
2005
, “
An Explicit Finite Difference Method and a New Von Neumann-Type Stability Analysis for Fractional Diffusion Equations
,”
SIAM J. Numer. Anal.
,
42
(
5
), pp.
1862
1874
.
7.
Yuste
,
S.
,
2006
, “
Weighted Average Finite Difference Methods for Fractional Diffusion Equations
,”
J. Comput. Phys.
,
216
(
1
), pp.
264
274
.
8.
Chen
,
C. M.
,
Liu
,
F.
,
Turner
,
I.
, and
Anh
,
V.
,
2007
, “
A Fourier Method for the Fractional Diffusion Equation Describing Sub-Diffusion
,”
J. Comput. Phys.
,
227
(
2
), pp.
886
897
.
9.
Metzler
,
J. K. R.
,
2000
, “
The Random Walks Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
10.
Cui
,
M.
,
2009
, “
Compact Finite Difference Method for the Fractional Diffusion Equation
,”
J. Comput. Phys.
,
228
(
20
), pp.
7792
7804
.
11.
Gao
,
G.
, and
Sun
,
Z.
,
2011
, “
A Compact Finite Difference Scheme for the Fractional Sub-Diffusion Equations
,”
J. Comput. Phys.
,
230
(
3
), pp.
586
595
.
12.
Renand
,
J.
,
Sun
,
Z.
, and
Zhao
,
X.
,
2013
, “
Compact Difference Scheme for the Fractional Sub-Diffusion Equation With Neumann Boundary Conditions
,”
J. Comput. Phys.
,
232
(
1
), pp.
456
467
.
13.
Zhao
,
X.
, and
Sun
,
Z.
,
2011
, “
A Box-Type Scheme for Fractional Sub-Diffusion Equation With Neumann Boundary Conditions
,”
J. Comput. Phys.
,
230
(
15
), pp.
6061
6074
.
14.
Dinh
,
V. N.
,
Basu
,
B.
, and
Brinkgreve
,
R. B. J.
,
2008
, “
Wavelet Based Evolutionary Spectral Analysis of Multi-Supported Bridges Under Spatially Varying Differential Support Motions
,”
J. Eng. Mech.
,
134
(
2
), pp.
155
162
.
15.
Chakraborty
,
A.
, and
Basu
,
B.
,
2014
, “
Wavelet-Based Evolutionary Response of Multi-Span Structures Including Wave-Passage and Site-Response Effect
,”
J. Eng. Mech.
,
140
(
8
), p.
04014056
.
16.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
,
Ghaini
,
F. M. M.
, and
Fereidouni
,
F.
,
2013
, “
Two-Dimensional Legendre Wavelets for Solving Fractional Poisson Equation With Dirichlet Boundary Conditions
,”
Eng. Anal. Boundary Elem.
,
37
(
11
), pp.
1331
1338
.
17.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
, and
Mohammadi
,
F.
,
2014
, “
Legendre Wavelets Method for Solving Fractional Partial Differential Equations With Dirichlet Boundary Conditions
,”
Appl. Math. Comput.
,
234
, pp.
267
276
.
18.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
, and
Mohammadi
,
F.
,
2014
, “
Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation
,”
Adv. Appl. Math. Mech.
,
6
(
2
), pp.
247
260
.
19.
Chena
,
Y.
,
Wua
,
Y.
,
Cuib
,
Y.
,
Wanga
,
Z.
, and
Jin
,
D.
,
2010
, “
Wavelet Method for a Class of Fractional Convection-Diffusion Equation With Variable Coefficients
,”
J. Comput. Sci.
,
1
(
3
), pp.
146
149
.
20.
Lepik
,
U.
,
2011
, “
Solving PDES With the Aid of Two-Dimensional Haar Wavelets
,”
Comput. Math. Appl.
,
61
(
7
), pp.
1873
1879
.
21.
Mahalakshmi
,
M.
,
Hariharan
,
G.
, and
Kannan
,
K.
,
2013
, “
The Wavelet Methods to Linear and Nonlinear Reaction Diffusion Model Arising in Mathematical Chemistry
,”
J. Math. Chem.
,
51
(
9
), pp.
2361
2385
.
22.
Canuto
,
C.
,
Hussaini
,
M.
,
Quarteroni
,
A.
, and
Zang
,
T.
,
1988
,
Spectral Methods in Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
23.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
,
Ghaini
,
F. M. M.
, and
Cattani
,
C.
,
2015
, “
Wavelets Method for the Time Fractional Diffusion-Wave Equation
,”
Phys. Lett. A
,
379
(
3
), p.
71
.
24.
Tripathi
,
M. P.
,
Baranwal
,
V. K.
,
Pandey
,
R. K.
, and
Singh
,
O. P.
,
2013
, “
A New Numerical Algorithm to Solve Fractional Differential Equations Based on Operational Matrix of Generalized Hat Functions
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
18
(
6
), pp.
1327
1340
.
You do not currently have access to this content.