Abstract

This paper explores the interactions of both phase and amplitude in a network of N MEMS-Colpitts oscillators that are resistively coupled. The numerical simulations of the extensive networks of oscillators, required for emerging applications such as clock synchronization and neuromorphic computing, become computationally prohibitive as the number of oscillators increases. This complicates the design and evaluation of such systems, as understanding the effects of changes in coupling and design parameters can require many simulations. This study employs the method of multiple scales (MS) in combination with the harmonic balance method to convert the coupled differential equations governing the system of oscillators into a set of nonlinear evolution equations for the amplitude and phase of the oscillators. The amplitude and phase evolve on a timescale that is slow, commensurate with the damping in the system, compared with the fast timescale of the oscillation frequencies. The approach used in this study to describe the amplitude and phase dynamics offers significant computational efficiency (gains of 10× to 50× are shown) compared to direct numerical integration while maintaining an accurate representation of the response. The results of the presented simulations demonstrate the effect of coupling strength on the dynamics of the network, accounting for both phase and amplitude dynamics.

References

1.
Pantaleone
,
J.
,
1998
, “
Stability of Incoherence in an Isotropic Gas of Oscillating Neutrinos
,”
Phys. Rev. D
,
58
(
7
), p.
073002
.10.1103/PhysRevD.58.073002
2.
Strogatz
,
S. H.
, and
Stewart
,
I.
,
1993
, “
Coupled Oscillators and Biological Synchronization
,”
Sci. Am.
,
269
(
6
), pp.
102
109
.10.1038/scientificamerican1293-102
3.
O'Keeffe
,
K. P.
,
Hong
,
H.
, and
Strogatz
,
S. H.
,
2017
, “
Oscillators That Sync and Swarm
,”
Nat. Commun.
,
8
(
1
), p.
1504
.10.1038/s41467-017-01190-3
4.
Raychowdhury
,
A.
,
Parihar
,
A.
,
Smith
,
G. H.
,
Narayanan
,
V.
,
Csaba
,
G.
,
Jerry
,
M.
,
Porod
,
W.
, and
Datta
,
S.
,
2019
, “
Computing With Networks of Oscillatory Dynamical Systems
,”
Proc. IEEE
,
107
(
1
), pp.
73
89
.10.1109/JPROC.2018.2878854
5.
Skardal
,
P. S.
, and
Arenas
,
A.
,
2015
, “
Control of Coupled Oscillator Networks With Application to Microgrid Technologies
,”
Sci. Adv.
,
1
(
7
), p.
e1500339
.10.1126/sciadv.1500339
6.
Collado
,
A.
, and
Georgiadis
,
A.
,
2009
, “
Coupled Oscillator Systems for Microwave Applications: Optimized Design Based on the Study and Control of the Multiple Coexisting Solutions in Systems With Symmetry
,”
Recent Advances in Nonlinear Dynamics and Synchronization: Theory and Applications
, K. Kyamakya, W. A. Halang, H. Unger, J. C. Chedjou, N. F. Rulkov, Z. Li, eds.,
Springer
, Berlin, Heidelberg, pp.
367
398
.10.1007/978-3-642-04227-0_12
7.
Strogatz
,
S. H.
,
2001
, “
Exploring Complex Networks
,”
Nature
,
410
(
6825
), pp.
268
276
.10.1038/35065725
8.
Abernot
,
M.
,
Azemard
,
N.
, and
Todri-Sanial
,
A.
,
2023
, “
Oscillatory Neural Network Learning for Pattern Recognition: An On-Chip Learning Perspective and Implementation
,”
Front. Neurosci.
,
17
, p.
1196796
.10.3389/fnins.2023.1196796
9.
Vodenicarevic
,
D.
,
Locatelli
,
N.
,
Grollier
,
J.
, and
Querlioz
,
D.
,
2016
, “
Synchronization Detection in Networks of Coupled Oscillators for Pattern Recognition
,” 2016 International Joint Conference on Neural Networks (
IJCNN
), Vancouver, BC, Canada, July 24–29, pp.
2015
2022
.10.1109/IJCNN.2016.7727447
10.
Huang
,
K.
, and
Hossein-Zadeh
,
M.
,
2020
, “
Detection and Sensing Using Coupled Oscillatory Systems at the Synchronization Edge
,”
IEEE Sens. J.
,
20
(
21
), pp.
12992
12998
.10.1109/JSEN.2020.3002933
11.
Pyles
,
C. S.
,
Bajaj
,
N.
,
Rhoads
,
J. F.
,
Weinstein
,
D.
, and
Quinn
,
D. D.
,
2019
, “
Threshold Color Sensing Using Coupled Oscillator Networks
,”
2019 IEEE Sensors
, Montreal, QC, Canada, Oct. 27–30, pp.
1
4
.10.1109/SENSORS43011.2019.8956835
12.
Kuramoto
,
Y.
,
1984
,
Chemical Oscillations, Waves, and Turbulence
, Vol. 8,
Springer
,
Berlin, Heidelberg, Germany
.
13.
Moreno
,
Y.
, and
Pacheco
,
A. F.
,
2004
, “
Synchronization of Kuramoto Oscillators in Scale-Free Networks
,”
Europhys. Lett.
,
68
(
4
), pp.
603
609
.10.1209/epl/i2004-10238-x
14.
Restrepo
,
J. G.
,
Ott
,
E.
, and
Hunt
,
B. R.
,
2005
, “
Onset of Synchronization in Large Networks of Coupled Oscillators
,”
Phys. Rev. E
,
71
(
3
), p.
036151
.10.1103/PhysRevE.71.036151
15.
Dörfler
,
F.
, and
Bullo
,
F.
,
2014
, “
Synchronization in Complex Networks of Phase Oscillators: A Survey
,”
Automatica
,
50
(
6
), pp.
1539
1564
.10.1016/j.automatica.2014.04.012
16.
Rodrigues
,
F. A.
,
Peron
,
T. K. D.
,
Ji
,
P.
, and
Kurths
,
J.
,
2016
, “
The Kuramoto Model in Complex Networks
,”
Phys. Rep.
,
610
, pp.
1
98
.10.1016/j.physrep.2015.10.008
17.
Fagerholm
,
E. D.
,
Moran
,
R. J.
,
Violante
,
I. R.
,
Leech
,
R.
, and
Friston
,
K. J.
,
2020
, “
Dynamic causal modelling of phase-amplitude interactions
,”
NeuroImage
, 208, p.
116452
.10.1016/j.neuroimage.2019.116452
18.
Ashwin
,
P.
,
Coombes
,
S.
, and
Nicks
,
R.
,
2016
, “
Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience
,”
J. Math. Neurosci.
,
6
(
1
), pp.
1
92
.10.1186/s13408-015-0033-6
19.
Habermehl
,
S. T.
,
Bajaj
,
N.
,
Shah
,
S. Y.
,
Quinn
,
D. D.
,
Weinstein
,
D.
, and
Rhoads
,
J. F.
,
2019
, “
Synchronization in a Network of Coupled MEMS-Colpitts Oscillators
,”
Nonlinear Dyn.
,
98
(
4
), pp.
3037
3050
.10.1007/s11071-019-05107-1
20.
Shah
,
S. Y.
,
Bajaj
,
N.
,
Pyles
,
C.
,
Weinstein
,
D.
,
Rhoads
,
J. F.
, and
Quinn
,
D. D.
,
2023
, “
The Dynamics of MEMS-Colpitts Oscillators
,”
Nonlinear Dyn.
,
111
(
19
), pp.
17639
17651
.10.1007/s11071-023-08774-3
21.
Rahimpour
,
S.
,
Bajaj
,
N.
,
Shah
,
S. Y.
,
Pyles
,
C.
,
Weinstein
,
D.
,
Rhoads
,
J. F.
, and
Quinn
,
D. D.
,
2023
, “
The Dynamics of a System of N Coupled MEMS-Colpitts Oscillators
,”
ASME
Paper No. DETC2023-116557.10.1115/DETC2023-116557
22.
Broadcom
,
2012
, “Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package,” Broadcom Inc., San Jose, CA, Datasheet No.
ATF-34143
.https://shop.richardsonrfpd.com/docs/rfpd/AV02-1283en.pdf
23.
The MathWorks Inc.,
2022
, “
MATLAB Version: 9.13.0 (R2022b)
,” The MathWorks, Natick, MA, accessed Sept. 25, 2022, https://www.mathworks.com
You do not currently have access to this content.