Nonlinear surge response behavior of a multipoint mooring system under harmonic wave excitation is analyzed to investigate various instability phenomena such as bifurcation, period-doubling, and subharmonic and chaotic responses. The nonlinearity of the system arises due to nonlinear restoring force, which is modeled as a cubic polynomial. In order to trace different branches at the bifurcation point on the response curve (amplitude versus frequency of excitation plot), an arc-length continuation technique along with the incremental harmonic balance (IHBC) method is employed. The stability of the solution is investigated by the Floquet theory using Hsu’s scheme. The period-one and subharmonic solutions obtained by the IHBC method are compared with those obtained by the numerical integration of the equation of motion. Characteristics of solutions from stable to unstable zones, chaotic motion, nT solutions, etc., are identified with the help of phase plots and Poincaré map sections.

1.
Thompson
,
J. M. T.
, 1983, “
Complex Dynamics of Complex Offshore Structures
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
387
, pp.
407
427
.
2.
Thompson
,
J. M. T.
,
Bokian
,
A. R.
, and
Ghaffari
,
R.
, 1984, “
Subharmonic and Chaotic Motions of Compliant Offshore Structure and Articulated Mooring Towers
,”
ASME J. Energy Resour. Technol.
0195-0738,
106
, pp.
191
198
.
3.
Bishop
,
S. R.
, and
Virgin
,
L. N.
, 1988, “
The Onset of Chaotic Motions of a Moored Semi-Submersible
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
110
, pp.
205
209
.
4.
Gottlieb
,
O.
, and
Yim
,
S. C. S.
, 1992, “
Nonlinear Oscillations, Bifurcations and Chaos in a Multi-Point Mooring System With a Geometric Nonlinearity
,”
Appl. Ocean Res.
,
14
, pp.
241
257
.
5.
Bernitsas
,
M. M.
, and
Chung
,
J. S.
, 1990, “
Nonlinear Stability and Simulation of Two-Line Ship Towing and Mooring
,”
Appl. Ocean Res.
,
12
(
2
), pp.
77
92
.
6.
Chung
,
J. S.
, and
Bernitsas
,
M. M.
, 1992, “
Dynamics of Two-line Ship Towing/Mooring Systems: Bifurcation, Singularities of Stability Boundaries, Chaos
,”
J. Ship Res.
0022-4502,
36
(
2
), pp.
93
105
.
7.
Burton
,
T. D.
, 1982, “
Nonlinear Oscillator Limit Cycle Analysis Using a Finite Transformation Approach
,”
Int. J. Non-Linear Mech.
0020-7462,
17
, pp.
7
19
.
8.
Chua
,
L. O.
, and
Ushida
,
A.
, 1981, “
Algorithms for Computing Almost Periodic Steady-State Response of Nonlinear Systems to Multiple Input Frequencies
,”
IEEE Trans. Circuits Syst.
0098-4094,
28
, pp.
953
971
.
9.
Kass-Petersen
,
C.
, 1985, “
Computation of Quasi Periodic Solutions of Forced Dissipative Systems
,”
J. Comput. Phys.
0021-9991,
58
, pp.
395
408
.
10.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
, 1982, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
849
853
.
11.
Lau
,
S.
,
Cheung
,
Y.
, and
Wu
,
S.
, 1983, “
Incremental Harmonic Balance Method With Multiple Time Scales for Periodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
871
876
.
12.
Leung
,
A. Y. T.
, and
Fung
,
T. C.
, 1989, “
Construction of Chaotic Regions
,”
J. Sound Vib.
0022-460X,
131
(
3
), pp.
445
455
.
13.
Lau
,
S.
, and
Zhang
,
W.
, 1992, “
Nonlinear Vibrations of Piecewise Linear Systems by Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
153
160
.
14.
Lau
,
S. L.
, and
Yuen
,
S. W.
, 1993, “
Solution Diagram of Nonlinear Dynamic Systems by the IHB Method
,”
J. Sound Vib.
0022-460X,
167
(
2
), pp.
303
316
.
15.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
, 1995, “
Nonlinear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
181
(
4
), pp.
619
633
.
16.
Pusenjak
,
R.
, 1997, “
Analysis of Nonlinear Oscillators With Finite Degrees of Freedom
,”
J. Mech. Eng. Sci.
0022-2542,
43
(
5–6
), pp.
219
230
.
17.
Raghothama
,
A.
, and
Narayanan
,
S.
, 2000, “
Bifurcations and Chaos of an Articulated Loading Platform With Piecewise Nonlinear Stiffness Using the Incremental Harmonic Balance Method
,”
Ocean Eng.
0029-8018,
27
, pp.
1087
1107
.
18.
Banik
,
A. K.
, and
Datta
,
T. K.
, 2008, “
Stability Analysis of an Articulated Loading Platform in Regular Sea
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
1
), p.
011013
.
19.
Banik
,
A. K.
, and
Datta
,
T. K.
, 2009, “
Stability Analysis of TLP Tethers Under Vortex-Induced Oscillations
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
131
(
1
), pp.
011601
.
20.
Leung
,
A. Y. T.
, 1991, “
Fourier Series for Products of Periodic Vectors
,”
J. Sound Vib.
0022-460X,
144
(
2
), pp.
362
364
.
21.
Friedmann
,
P.
,
Hammond
,
C. E.
, and
Woo
,
T. -H.
, 1977, “
Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems
,”
Int J. Numer. Methods Eng.
,
11
, pp.
1117
1136
.
You do not currently have access to this content.