This paper deals with the study of a model of self-sustained electrostatic microelectromechanical system (MEMS). The electrical part contains two nonlinear components: a nonlinear resistance with a negative slope in the current-voltage characteristics, and a capacitor, having a cubic form as the charge-voltage characteristics. The modal approximation and the finite differences numerical scheme are used to analyze the dynamical behavior of the system: Resonant oscillations and bifurcation diagram leading to chaos are observed for some values of the polarization voltage. Hints of applications of the device are given.

1.
Feynman
,
R. P.
, 1960, “
There’s Plenty of Room at the Bottom
,
” Proceedings of the American Physical Society Meeting
, Pasadena, CA.
2.
Krylov
,
S.
, and
Maimon
,
R.
, 2004, “
Pull-In Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
332
342
.
3.
Wang
,
Y. C.
,
Adams
,
S. G.
, and
Thorp
,
J. S.
, 1998, “
Chaos in MEMS, Parameter Estimation and Its Potential Application
,”
IEE Trans. Circuits Syst., I: Regul. Pap.
,
45
, pp.
1013
1020
.
4.
Luo
,
A. C. J.
, and
Wang
,
F.
, 2002, “
Chaotic Motion in a Microelectromechanical System With Non-Linearity From Capacitors
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
7
, pp.
31
49
.
5.
Xie
,
W. C.
,
Lee
,
H. P.
, and
Lim
,
S. P.
, 2003, “
Nonlinear Dynamics Analysis of MEMS Switches by Nonlinear Modal Analysis
,”
Nonlinear Dyn.
0924-090X,
31
, pp.
243
256
.
6.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2004, “
Modeling and Simulations of Thermoelastic Damping in Microplates
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1711
1717
.
7.
De
,
S. K.
, and
Aluru
,
N. R.
, 2005, “
Complex Oscillations and Chaos in Electrostatic Microelectromechanical Under Superharmonic Excitations
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
204101
.
8.
Liu
,
S.
,
Davidson
,
A.
, and
Lin
,
Q.
, 2004, “
Simulation Studies on Nonlinear Dynamics and Chaos in a MEMS Cantilever Control System
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1064
1073
.
9.
Zhao
,
X.
,
Reddy
,
C. K.
, and
Nayfeh
,
A. H.
, 2005, “
Nonlinear Dynamics of an Electrically Driven Impact Microactuator
,”
Nonlinear Dyn.
0924-090X,
40
, pp.
227
239
.
10.
Krylov
,
S.
,
Harari
,
I.
, and
Cohen
,
Y.
, 2005, “
Stabilization of Electrostatically Actuatued Microstructures Using Parametric Excitation
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1188
1204
.
11.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
, 2006, “
The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
890
899
.
12.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2007, “
Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
, pp.
232
241
.
13.
Taffoti Yolong
,
V. Y.
, and
Woafo
,
P.
, 2009, “
Dynamics of Electrostatically Actuated Micro-Electromechanical Systems
,”
Int. J. Bifurcat. Chaos Appl. Sci. Eng.
,
19
, pp.
1007
1022
.
14.
Yamapi
,
R.
, and
Woafo
,
P.
, 2005, “
Dynamics and Synchronization of Coupled Self-Sustained Electromechanical Devices
,”
J. Sound Vib.
0022-460X,
285
, pp.
1151
1170
.
15.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
, 2007, “
Dynamics of a Self-Sustained Electromechanical System With Flexible Arm and Cubic Coupling
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
8
), pp.
1504
1517
.
16.
Kitio Kwuimy
,
C. A.
, and
Woafo
,
P.
, 2008, “
Dynamics, Chaos and Synchronization of Self-Sustained Electromechanical System With Clamped-Free Flexible Arm
,”
Nonlinear Dyn.
0924-090X,
53
, pp.
201
213
.
17.
Oksasoglu
,
A.
, and
Varim
,
D.
, 1994, “
Interaction of Low and High Frequency Oscillations in a Nonlinear RLC Circuit
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
41
(
10
), pp.
669
672
.
18.
Hasler
,
M. J.
, 1987, “
Electrical Circuits With Chaotic Behaviour
,”
Proc. IEEE
0018-9219,
75
, pp.
1009
1021
.
19.
King
,
G. P.
, and
Gaito
,
S. T.
, 1992, “
Bistable Chaos I: Unfolding the Cusp
,”
Phys. Rev. A
1050-2947,
46
, pp.
3092
3099
.
20.
Nana
,
B.
, and
Woafo
,
P.
, 2008, “
Power Delivered by an Array of van der Pol Oscillators Coupled to a Resonant Cavity
,”
Physica A
0378-4371,
387
(
13
), pp.
3305
3313
.
21.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
22.
Timoshenko
,
S. P.
, 1966,
Théorie de la stabilité élastique
,
Dunod
,
Paris
.
23.
DeMartini
,
B. E.
,
Butterfield
,
H. E.
,
Moehlis
,
J.
, and
Turner
,
K. L.
, 2007, “
Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation
,”
J. Microelectromech. Syst.
1057-7157,
16
(
6
), pp.
1314
1323
.
24.
Krylov
,
S.
, 2007 “
Lyapunov Exponent as a Criterion for the Dynamic Pull-In Instability of Electrostatically Actuated Microstructures
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
626
642
.
25.
Nana
,
B.
, and
Woafo
,
P.
, 2006, “
Synchronization in a Ring of Four Mutually Coupled van der Pol Oscillators: Theory and Experiment
,”
Phys. Rev. E
1063-651X,
74
, p.
046213
.
You do not currently have access to this content.