This paper deals with the study of a model of self-sustained electrostatic microelectromechanical system (MEMS). The electrical part contains two nonlinear components: a nonlinear resistance with a negative slope in the current-voltage characteristics, and a capacitor, having a cubic form as the charge-voltage characteristics. The modal approximation and the finite differences numerical scheme are used to analyze the dynamical behavior of the system: Resonant oscillations and bifurcation diagram leading to chaos are observed for some values of the polarization voltage. Hints of applications of the device are given.
1.
Feynman
, R. P.
, 1960, “There’s Plenty of Room at the Bottom
, ” Proceedings of the American Physical Society Meeting
, Pasadena, CA.2.
Krylov
, S.
, and Maimon
, R.
, 2004, “Pull-In Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force
,” ASME J. Vibr. Acoust.
0739-3717, 126
, pp. 332
–342
.3.
Wang
, Y. C.
, Adams
, S. G.
, and Thorp
, J. S.
, 1998, “Chaos in MEMS, Parameter Estimation and Its Potential Application
,” IEE Trans. Circuits Syst., I: Regul. Pap.
, 45
, pp. 1013
–1020
.4.
Luo
, A. C. J.
, and Wang
, F.
, 2002, “Chaotic Motion in a Microelectromechanical System With Non-Linearity From Capacitors
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 7
, pp. 31
–49
.5.
Xie
, W. C.
, Lee
, H. P.
, and Lim
, S. P.
, 2003, “Nonlinear Dynamics Analysis of MEMS Switches by Nonlinear Modal Analysis
,” Nonlinear Dyn.
0924-090X, 31
, pp. 243
–256
.6.
Nayfeh
, A. H.
, and Younis
, M. I.
, 2004, “Modeling and Simulations of Thermoelastic Damping in Microplates
,” J. Micromech. Microeng.
0960-1317, 14
, pp. 1711
–1717
.7.
De
, S. K.
, and Aluru
, N. R.
, 2005, “Complex Oscillations and Chaos in Electrostatic Microelectromechanical Under Superharmonic Excitations
,” Phys. Rev. Lett.
0031-9007, 94
, p. 204101
.8.
Liu
, S.
, Davidson
, A.
, and Lin
, Q.
, 2004, “Simulation Studies on Nonlinear Dynamics and Chaos in a MEMS Cantilever Control System
,” J. Micromech. Microeng.
0960-1317, 14
, pp. 1064
–1073
.9.
Zhao
, X.
, Reddy
, C. K.
, and Nayfeh
, A. H.
, 2005, “Nonlinear Dynamics of an Electrically Driven Impact Microactuator
,” Nonlinear Dyn.
0924-090X, 40
, pp. 227
–239
.10.
Krylov
, S.
, Harari
, I.
, and Cohen
, Y.
, 2005, “Stabilization of Electrostatically Actuatued Microstructures Using Parametric Excitation
,” J. Micromech. Microeng.
0960-1317, 15
, pp. 1188
–1204
.11.
Rhoads
, J. F.
, Shaw
, S. W.
, and Turner
, K. L.
, 2006, “The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,” J. Micromech. Microeng.
0960-1317, 16
, pp. 890
–899
.12.
Younis
, M. I.
, and Nayfeh
, A. H.
, 2007, “Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load
,” ASME J. Comput. Nonlinear Dyn.
1555-1423, 2
, pp. 232
–241
.13.
Taffoti Yolong
, V. Y.
, and Woafo
, P.
, 2009, “Dynamics of Electrostatically Actuated Micro-Electromechanical Systems
,” Int. J. Bifurcat. Chaos Appl. Sci. Eng.
, 19
, pp. 1007
–1022
.14.
Yamapi
, R.
, and Woafo
, P.
, 2005, “Dynamics and Synchronization of Coupled Self-Sustained Electromechanical Devices
,” J. Sound Vib.
0022-460X, 285
, pp. 1151
–1170
.15.
Kitio Kwuimy
, C. A.
, and Woafo
, P.
, 2007, “Dynamics of a Self-Sustained Electromechanical System With Flexible Arm and Cubic Coupling
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
(8
), pp. 1504
–1517
.16.
Kitio Kwuimy
, C. A.
, and Woafo
, P.
, 2008, “Dynamics, Chaos and Synchronization of Self-Sustained Electromechanical System With Clamped-Free Flexible Arm
,” Nonlinear Dyn.
0924-090X, 53
, pp. 201
–213
.17.
Oksasoglu
, A.
, and Varim
, D.
, 1994, “Interaction of Low and High Frequency Oscillations in a Nonlinear RLC Circuit
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122, 41
(10
), pp. 669
–672
.18.
Hasler
, M. J.
, 1987, “Electrical Circuits With Chaotic Behaviour
,” Proc. IEEE
0018-9219, 75
, pp. 1009
–1021
.19.
King
, G. P.
, and Gaito
, S. T.
, 1992, “Bistable Chaos I: Unfolding the Cusp
,” Phys. Rev. A
1050-2947, 46
, pp. 3092
–3099
.20.
Nana
, B.
, and Woafo
, P.
, 2008, “Power Delivered by an Array of van der Pol Oscillators Coupled to a Resonant Cavity
,” Physica A
0378-4371, 387
(13
), pp. 3305
–3313
.21.
Nayfeh
, A. H.
, and Mook
, D. T.
, 1979, Nonlinear Oscillations
, Wiley-Interscience
, New York
.22.
Timoshenko
, S. P.
, 1966, Théorie de la stabilité élastique
, Dunod
, Paris
.23.
DeMartini
, B. E.
, Butterfield
, H. E.
, Moehlis
, J.
, and Turner
, K. L.
, 2007, “Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation
,” J. Microelectromech. Syst.
1057-7157, 16
(6
), pp. 1314
–1323
.24.
Krylov
, S.
, 2007 “Lyapunov Exponent as a Criterion for the Dynamic Pull-In Instability of Electrostatically Actuated Microstructures
,” Int. J. Non-Linear Mech.
0020-7462, 42
, pp. 626
–642
.25.
Nana
, B.
, and Woafo
, P.
, 2006, “Synchronization in a Ring of Four Mutually Coupled van der Pol Oscillators: Theory and Experiment
,” Phys. Rev. E
1063-651X, 74
, p. 046213
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.