The identification of parameters in multibody systems governed by ordinary differential equations, given noisy experimental data for only a subset of the system states, is considered in this work. The underlying optimization problem is solved using a combination of the Gauss–Newton and single-shooting methods. A homotopy transformation motivated by the theory of state observers is proposed to avoid the well-known issue of converging to a local minimum. By ensuring that the response predicted by the mathematical model is very close to the experimental data at every stage of the optimization procedure, the homotopy transformation guides the algorithm toward the global minimum. To demonstrate the efficacy of the algorithm, parameters are identified for pendulum-cart and double-pendulum systems using only one noisy state measurement in each case. The proposed approach is also compared with the linear regression method.

References

1.
Serban
,
R.
, and
Freeman
,
J. S.
, 2001, “
Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems
,”
Multibody Syst. Dyn.
,
5
(
4
), pp.
335
350
.
2.
Ebrahimi
,
S.
, and
Kövecses
,
J.
, 2010, “
Sensitivity Analysis for Estimation of Inertial Parameters of Multibody Mechanical Systems
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
19
28
.
3.
Ebrahimi
,
S.
, and
Kövecses
,
J.
, 2010, “
Unit Homogenization for Estimation of Inertial Parameters of Multibody Mechanical Systems
,”
Mech. Mach. Theory
,
45
(
3
), pp.
438
453
.
4.
Kövecses
,
J.
, and
Ebrahimi
,
S.
, 2009, “
Parameter Analysis and Normalization for the Dynamics and Design of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031008
.
5.
Shome
,
S. S.
,
Beale
,
D. G.
, and
Wang
,
D.
, 1998, “
A General Method for Estimating Dynamic Parameters of Spatial Mechanisms
,”
Nonlinear Dyn.
,
16
(
4
), pp.
349
368
.
6.
Chenut
,
X.
,
Fisette
,
P.
, and
Samin
,
J.-C.
, 2002, “
Recursive Formalism With a Minimal Dynamic Parameterization for the Identification and Simulation of Multibody Systems. Application to the Human Body
,”
Multibody Syst. Dyn.
,
8
(
2
), pp.
117
140
.
7.
Fisette
,
P.
,
Raucent
,
B.
, and
Samin
,
J.-C.
, 1996, “
Minimal Dynamic Characterization of Tree-Like Multibody Systems
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
165
184
.
8.
Gautier
,
M.
, and
Khalil
,
W.
, 1990, “
Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
368
373
.
9.
Raucent
,
B.
,
Campion
,
G.
,
Bastin
,
G.
,
Samin
,
J.-C.
, and
Willems
,
P. Y.
, 1992, “
Identification of the Barycentric Parameters of Robot Manipulators From External Measurements
,”
Automatica
,
28
(
5
), pp.
1011
1016
.
10.
Rao
,
S. S.
, 1984,
Optimization: Theory and Applications
, 2nd ed.,
John Wiley & Sons
,
New York
.
11.
Moré
,
J. J.
, 1978, “
The Levenberg–Marquardt Algorithm: Implementation and Theory
,”
Lecture Notes in Mathematics: Numerical Analysis
,
G.
Watson
, ed., Vol.
630
,
Springer
,
New York
, pp.
105
116
.
12.
Abarbanel
,
H. D. I.
,
Creveling
,
D. R.
,
Farsian
,
R.
, and
Kostuk
,
M.
, 2009, “
Dynamical State and Parameter Estimation
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
4
), pp.
1341
1381
.
13.
Abarbanel
,
H. D. I.
,
Kostuk
,
M.
, and
Whartenby
,
W.
, 2010, “
Data Assimilation With Regularized Nonlinear Instabilities
,”
Q. J. R. Meteorol. Soc.
,
136
(
648
), pp.
769
783
.
14.
Brewer
,
D.
,
Barenco
,
M.
,
Callard
,
R.
,
Hubank
,
M.
, and
Stark
,
J.
, 2008, “
Fitting Ordinary Differential Equations to Short Time Course Data
,”
Philos. Trans. R. Soc. London
,
366
(
1865
), pp.
519
544
.
15.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison–Wesley
,
Boston
.
16.
Romeijn
,
H. E.
, and
Smith
,
R. L.
, 1994, “
Simulated Annealing for Constrained Global Optimization
,”
J. Global Optim.
,
5
(
2
), pp.
101
126
.
17.
Eberhard
,
P.
,
Schiehlen
,
W.
, and
Bestle
,
D.
, 1999, “
Some Advantages of Stochastic Methods in Multicriteria Optimization of Multibody Systems
,”
Arch. Appl. Mech.
,
69
(
8
), pp.
543
554
.
18.
He
,
Y.
, and
McPhee
,
J.
, 2007, “
Application of Optimisation Algorithms and Multibody Dynamics to Ground Vehicle Suspension Design
,”
Int. J. Heavy Vehicle Sys.
,
14
(
2
), pp.
158
192
.
19.
Dunlavy
,
D. M.
, and
O’Leary
,
D. P.
, 2005, “
Homotopy Optimization Methods for Global Optimization
,” Technical Report No. SAND2005-7495, Sandia National Laboratories.
20.
Watson
,
L. T.
, 1990, “
Globally Convergent Homotopy Algorithms for Nonlinear Systems of Equations
,”
Nonlinear Dyn.
,
1
(
2
), pp.
143
191
.
21.
Watson
,
L. T.
, and
Haftka
,
R. T.
, 1989, “
Modern Homotopy Methods in Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
74
(
3
), pp.
289
305
.
22.
Morgan
,
A.
, and
Sommese
,
A.
, 1987, “
A Homotopy for Solving General Polynomial Systems that Respects m-Homogeneous Structures
,”
Appl. Math. Comput.
,
24
(
2
), pp.
101
113
.
23.
Verschelde
,
J.
, 1999, “
Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
,
25
(
2
), pp.
251
276
.
24.
Chow
,
S.-N.
,
Mallet-Paret
,
J.
, and
Yorke
,
J. A.
, 1978, “
Finding Zeroes of Maps: Homotopy Methods that are Constructive With Probability One
,”
Math. Comput.
,
32
(
143
), pp.
887
899
.
25.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
, 2004, “
Advances in Polynomial Continuation for Solving Problems in Kinematics
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
262
268
.
26.
Wu
,
T.-M.
, 2005, “
Searching All the Roots of Inverse Kinematics Problem of Robot by Homotopy Continuation Method
,”
J. Appl. Sci.
,
5
(
4
), pp.
666
673
.
27.
Wu
,
T.-M.
, 2006, “
The Inverse Kinematics Problem of Spatial 4P3R Robot Manipulator by the Homotopy Continuation Method With an Adjustable Auxiliary Homotopy Function
,”
Nonlinear Anal.
,
64
(
10
), pp.
2373
2380
.
28.
Dhingra
,
A. K.
,
Cheng
,
J. C.
, and
Kohli
,
D.
, 1994, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1122
1131
.
29.
Schreiber
,
H.
,
Meer
,
K.
, and
Schmitt
,
B. J.
, 2002, “
Dimensional Synthesis of Planar Stephenson Mechanisms for Motion Generation Using Circlepoint Search and Homotopy Methods
,”
Mech. Mach. Theory
,
37
(
7
), pp.
717
737
.
30.
Vyasarayani
,
C. P.
,
Uchida
,
T.
,
Carvalho
,
A.
, and
McPhee
,
J.
, 2011, “
Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach
,”
Multibody Syst. Dyn.
, (in press).
31.
Khalil
,
H. K.
, 1999, “
High-Gain Observers in Nonlinear Feedback Control
,”
Lecture Notes in Control and Information Sciences: New Directions in Nonlinear Observer Design
,
H.
Nijmeijer
and
T. I.
Fossen
, eds., Vol.
244
,
Springer
,
New York
, pp.
249
268
.
32.
Banerjee
,
J. M.
, and
McPhee
,
J.
, 2011, “
Graph-Theoretic Sensitivity Analysis of Multibody Systems
,”
Proceedings of the Multibody Dynamics 2011 ECCOMAS Thematic Conference
,
J.-C.
Samin
and
P.
Fisette
, eds.
33.
Baake
,
E.
,
Baake
,
M.
,
Bock
,
H. G.
, and
Briggs
,
K. M.
, 1992, “
Fitting Ordinary Differential Equations to Chaotic Data
,”
Phys. Rev. A
,
45
(
8
), pp.
5524
5529
.
34.
Leineweber
,
D. B.
,
Schäfer
,
A.
,
Bock
,
H. G.
, and
Schlöder
,
J. P.
, 2003, “
An Efficient Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic Process Optimization: Part II: Software Aspects and Applications
,”
Comput. Chem. Eng.
,
27
(
2
), pp.
167
174
.
35.
Edsberg
,
L.
, and
Wedin
,
P. -Å.
, 1995, “
Numerical Tools for Parameter Estimation in ODE-Systems
,”
Optim. Methods Software
,
6
(
3
), pp.
193
217
.
You do not currently have access to this content.