Abstract

Multi-objective optimization problems (MOOPs) with uncertainties are common in engineering design. To find robust Pareto fronts, multi-objective robust optimization (MORO) methods with inner–outer optimization structures usually have high computational complexity, which is a critical issue. Generally, in design problems, robust Pareto solutions lie somewhere closer to nominal Pareto points compared with randomly initialized points. The searching process for robust solutions could be more efficient if starting from nominal Pareto points. We propose a new method sequentially approaching to the robust Pareto front (SARPF) from the nominal Pareto points where MOOPs with uncertainties are solved in two stages. The deterministic optimization problem and robustness metric optimization are solved in the first stage, where nominal Pareto solutions and the robust-most solutions are identified, respectively. In the second stage, a new single-objective robust optimization problem is formulated to find the robust Pareto solutions starting from the nominal Pareto points in the region between the nominal Pareto front and robust-most points. The proposed SARPF method can reduce a significant amount of computational time since the optimization process can be performed in parallel at each stage. Vertex estimation is also applied to approximate the worst-case uncertain parameter values, which can reduce computational efforts further. The global solvers, NSGA-II for multi-objective cases and genetic algorithm (GA) for single-objective cases, are used in corresponding optimization processes. Three examples with the comparison with results from the previous method are presented to demonstrate the applicability and efficiency of the proposed method.

References

1.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
John Wiley & Sons
,
New York
.
2.
Ide
,
J.
, and
Schöbel
,
A.
,
2016
, “
Robustness for Uncertain Multi-Objective Optimization: A Survey and Analysis of Different Concepts
,”
OR Spectrum
,
38
(
1
), pp.
235
271
. 10.1007/s00291-015-0418-7
3.
Kuroiwa
,
D.
, and
Lee
,
G. M.
,
2014
, “
On Robust Multiobjective Optimization
,”
J. Nonlinear Convex Anal.
,
15
(
6
), pp.
1125
1136
. http://www.math.ac.vn/publications/vjm/VJM_40/VJM,%20so%202-,%202012/NoiDung/305-317_Kuroiwa-Lee.pdf
4.
Gaspar-Cunha
,
A.
, and
Covas
,
J. A.
,
2008
, “
Robustness in Multi-Objective Optimization Using Evolutionary Algorithms
,”
Comput. Optim. Appl.
,
39
(
1
), pp.
75
96
. 10.1007/s10589-007-9053-9
5.
Li
,
M.
,
Azarm
,
S.
, and
Aute
,
V.
,
2005
, “
A Multi-Objective Genetic Algorithm for Robust Design Optimization
,”
Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation
,
Washington, DC
,
June 25–29
, ACM, pp.
771
778
.
6.
Gunawan
,
S.
,
2004
, “
Parameter Sensitivity Measures for Single Objective, Multi-Objective, and Feasibility Robust Design Optimization
,”
Ph.D. dissertation
,
University of Maryland
,
College Park, MD
.
7.
Deb
,
K.
, and
Gupta
,
H.
,
2006
, “
Introducing Robustness in Multi-Objective Optimization
,”
Evol. Comput.
,
14
(
4
), pp.
463
494
. 10.1162/evco.2006.14.4.463
8.
Barrico
,
C.
, and
Antunes
,
C. H.
,
2006
, “
A New Approach to Robustness Analysis in Multi-Objective Optimization
,”
Proceedings of 7th International Conference on Multi-Objective Programming and Goal Programming (MOPGP 2006)
,
Loire Valley, City of Tours, France
,
June 12–16
, pp.
12
14
.
9.
Barrico
,
C.
, and
Antunes
,
C. H.
,
2006
, “
Robustness Analysis in Multi-Objective Optimization Using a Degree of Robustness Concept
,”
Proceedings of Evolutionary Computation, IEEE Congress on CEC 2006
,
Vancouver, BC, Canada
,
July 16–21
, IEEE, pp.
1887
1892
.
10.
Nag
,
K.
,
Pal
,
T.
, and
Pal
,
N. R.
,
2014
, “Robust Consensus: A New Measure for Multicriteria Robust Group Decision Making Problems Using Evolutionary Approach,”
Artificial Intelligence and Soft Computing Icaisc 2014, Pt I
,
L.
Rutkowski
,
M.
Korytkowski
,
R.
Scherer
,
R
.
Tadeusiewicz
,
L. A.
Zadeh
, and
J. M.
Zurada
, eds., pp.
384
394
.
11.
Souza
,
D. L.
,
Lobato
,
F. S.
, and
Gedraite
,
R.
,
2015
, “
Robust Multiobjective Optimization Applied to Optimal Control Problems Using Differential Evolution
,”
Chem. Eng. Technol.
,
38
(
4
), pp.
721
726
. 10.1002/ceat.201400571
12.
Brito
,
T. G.
,
Paiva
,
A. P.
,
Ferreira
,
J. R.
,
Gomes
,
J. H. F.
, and
Balestrassi
,
P. P.
,
2014
, “
A Normal Boundary Intersection Approach to Multiresponse Robust Optimization of the Surface Roughness in End Milling Process With Combined Arrays
,”
Precis. Eng.
,
38
(
3
), pp.
628
638
. 10.1016/j.precisioneng.2014.02.013
13.
Rezaei
,
N.
,
Ahmadi
,
A.
,
Khazali
,
A.
, and
Aghaei
,
J.
,
2019
, “
Multiobjective Risk-Constrained Optimal Bidding Strategy of Smart Microgrids: An IGDT-Based Normal Boundary Intersection Approach
,”
IEEE Trans. Ind. Inform.
,
15
(
3
), pp.
1532
1543
. 10.1109/TII.2018.2850533
14.
Lopez
,
R. H.
,
Ritto
,
T. G.
,
Sampaio
,
R.
, and
de Cursi
,
J. E. S.
,
2014
, “
A New Algorithm for the Robust Optimization of Rotor-Bearing Systems
,”
Eng. Optimiz.
,
46
(
8
), pp.
1123
1138
. 10.1080/0305215X.2013.819095
15.
Lopes
,
L. G. D.
,
Brito
,
T. G.
,
Paiva
,
A. P.
,
Peruchi
,
R. S.
, and
Balestrassi
,
P. P.
,
2016
, “
Robust Parameter Optimization Based on Multivariate Normal Boundary Intersection
,”
Comput. Ind. Eng.
,
93
, pp.
55
66
. 10.1016/j.cie.2015.12.023
16.
Cromvik
,
C.
,
Lindroth
,
P.
,
Patriksson
,
M.
, and
Strömberg
,
A.-B.
,
2011
,
A New Robustness Index for Multi-Objective Optimization Based on a User Perspective
,
Department of Mathematical Sciences, Division of Mathematics, Chalmers University of Technology and University of Gothenburg
.
17.
Toyoda
,
M.
, and
Kogiso
,
N.
,
2015
, “
Robust Multiobjective Optimization Method Using Satisficing Trade-off Method
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1361
1367
. 10.1007/s12206-015-0305-9
18.
Sabioni
,
C. L.
,
Ribeiro
,
M. F. D.
, and
de Vasconcelos
,
J. A.
,
2017
, “
Decision Maker Iterative-Based Framework for Multiobjective Robust Optimization
,”
Neurocomputing
,
242
, pp.
113
130
. 10.1016/j.neucom.2017.02.060
19.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2011
, “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
. 10.1115/1.4003918
20.
Wang
,
N. F.
,
Zhang
,
X. M.
, and
Yang
,
Y. W.
,
2013
, “
A Hybrid Genetic Algorithm for Constrained Multi-Objective Optimization Under Uncertainty and Target Matching Problems
,”
Appl. Soft Comput.
,
13
(
8
), pp.
3636
3645
. 10.1016/j.asoc.2013.03.013
21.
Cheng
,
S.
,
Zhou
,
J.
, and
Li
,
M.
,
2015
, “
A New Hybrid Algorithm for Multi-Objective Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021401
. 10.1115/1.4029026
22.
Bhuvana
,
J.
, and
Aravindan
,
C.
,
2016
, “
Memetic Algorithm With Preferential Local Search Using Adaptive Weights for Multi-Objective Optimization Problems
,”
Soft Comput.
,
20
(
4
), pp.
1365
1388
. 10.1007/s00500-015-1593-9
23.
Xie
,
T.
,
Jiang
,
P.
,
Zhou
,
Q.
,
Shu
,
L.
,
Zhang
,
Y.
,
Meng
,
X.
, and
Wei
,
H.
,
2018
, “
Advanced Multi-Objective Robust Optimization Under Interval Uncertainty Using Kriging Model and Support Vector Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041012
. 10.1115/1.4040710
24.
Zhang
,
Y.
, and
Li
,
M.
,
2018
, “
Robust Tolerance Optimization for Internal Combustion Engines Under Parameter and Model Uncertainties Considering Metamodeling Uncertainty From Gaussian Processes
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041011
. 10.1115/1.4040608
25.
Turner
,
C. J.
, and
Crawford
,
R. H.
,
2009
, “
N-Dimensional Nonuniform Rational B-Splines for Metamodeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
3
), p.
031002
. 10.1115/1.3184599
26.
Steuben
,
J.
, and
Turner
,
C. J.
,
2011
, “
Robust Optimization and Analysis of NURBs-Based Metamodels Using Graph Theory
,”
Proceedings of ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
, pp.
587
598
.
27.
Steuben
,
J. C.
, and
Turner
,
C. J.
,
2012
, “
Robust Optimization of Mixed-Integer Problems Using NURBs-Based Metamodels
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041010
. 10.1115/1.4007988
28.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2005
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
. 10.1115/1.2202884
29.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
30.
Alotto
,
P.
,
Magele
,
C.
,
Renhart
,
W.
,
Weber
,
A.
, and
Steiner
,
G.
,
2003
, “
Robust Target Functions in Electromagnetic Design
,”
COMPEL
,
22
(
3
), pp.
549
560
. 10.1108/03321640310475029
31.
Li
,
M.
, and
Azarm
,
S.
,
2008
, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
. 10.1115/1.2936898
32.
Xia
,
T.
,
Li
,
M.
, and
Zhou
,
J.
,
2016
, “
A Sequential Robust Optimization Approach for Multidisciplinary Design Optimization With Uncertainty
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111406
. 10.1115/1.4034113
33.
Li
,
M.
,
2007
, “
Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications
,”
Ph.D. dissertation
,
University of Maryland
,
College Park, MD
.
You do not currently have access to this content.