Abstract

Surrogate models play a vital role in overcoming the computational challenge in designing and analyzing nonlinear dynamic systems, especially in the presence of uncertainty. This paper presents a comparative study of different surrogate modeling techniques for nonlinear dynamic systems. Four surrogate modeling methods, namely, Gaussian process (GP) regression, a long short-term memory (LSTM) network, a convolutional neural network (CNN) with LSTM (CNN-LSTM), and a CNN with bidirectional LSTM (CNN-BLSTM), are studied and compared. All these model types can predict the future behavior of dynamic systems over long periods based on training data from relatively short periods. The multi-dimensional inputs of surrogate models are organized in a nonlinear autoregressive exogenous model (NARX) scheme to enable recursive prediction over long periods, where current predictions replace inputs from the previous time window. Three numerical examples, including one mathematical example and two nonlinear engineering analysis models, are used to compare the performance of the four surrogate modeling techniques. The results show that the GP-NARX surrogate model tends to have more stable performance than the other three deep learning (DL)-based methods for the three particular examples studied. The tuning effort of GP-NARX is also much lower than its deep learning-based counterparts.

References

1.
Irizarry
,
R.
,
2005
, “
A Generalized Framework for Solving Dynamic Optimization Problems Using the Artificial Chemical Process Paradigm: Applications to Particulate Processes and Discrete Dynamic Systems
,”
Chem. Eng. Sci.
,
60
(
21
), pp.
5663
5681
.
2.
Xu
,
B.
,
He
,
J.
, and
Masri
,
S. F.
,
2015
, “
Data-Based Model-Free Hysteretic Restoring Force and Mass Identification for Dynamic Systems
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
30
(
1
), pp.
2
18
.
3.
Pravin
,
P.
,
Bhartiya
,
S.
, and
Gudi
,
R. D.
,
2019
, “
Modeling and Predictive Control of an Integrated Reformer–Membrane–Fuel Cell–Battery Hybrid Dynamic System
,”
Ind. Eng. Chem. Res.
,
58
(
26
), pp.
11392
11406
.
4.
Tahmasian
,
S.
,
2021
, “
Dynamic Analysis and Optimal Control of Drag-Based Vibratory Systems Using Averaging
,”
Nonlinear Dyn.
,
104
(
3
), pp.
2201
2217
.
5.
Li
,
M.
, and
Lai
,
A. C. K.
,
2015
, “
Review of Analytical Models for Heat Transfer by Vertical Ground Heat Exchangers (GHEs): A Perspective of Time and Space Scales
,”
Appl. Energy
,
151
(
1
), pp.
178
191
.
6.
Butt
,
W. A.
,
Yan
,
L.
, and
Amezquita S
,
K.
,
2013
, “
Adaptive Integral Dynamic Surface Control of a Hypersonic Flight Vehicle
,”
Int. J. Syst. Sci.
,
46
(
10
), pp.
1717
1728
.
7.
Yoon
,
S.
,
2003
, “
A Study on Terrain-Surface Modeling and Searching Algorithms for Real-Time Simulation of Off-Road Vehicles
,”
Veh. Syst. Dyn.
,
39
(
5
), pp.
353
363
.
8.
Ouyang
,
M.
,
2014
, “
Review on Modeling and Simulation of Interdependent Critical Infrastructure Systems
,”
Reliab. Eng. Syst. Saf.
,
121
(
1
), pp.
43
60
.
9.
Gerdes
,
J.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2019
, “
A Simulation-Based Approach to Modeling Component Interactions During Design of Flapping Wing Aerial Vehicles
,”
Int. J. Micro Air Veh.
,
11
(
1
), p.
1756829318822325
.
10.
Tavecchia
,
G.
,
Miranda
,
M. A.
,
Borras
,
D.
,
Bengoa
,
M.
,
Barcelo
,
C.
,
Paredes-Esquivel
,
C.
, and
Schwarz
,
C.
,
2017
, “
Modelling the Range Expansion of the Tiger Mosquito in a Mediterranean Island Accounting for Imperfect Detection
,”
Front. Zool.
,
14
(
1
), p.
39
.
11.
Thomas
,
N.
,
Portyankina
,
G.
,
Hansen
,
C. J.
, and
Pommerol
,
A.
,
2011
, “
HiRISE Observations of Gas Sublimation-Driven Activity in Mars’ Southern Polar Regions: IV. Fluid Dynamics Models of CO2 Jets
,”
Icarus
,
212
(
1
), pp.
66
85
.
12.
Rivals
,
I.
, and
Personnaz
,
L.
,
1996
, “
Black-Box Modeling With State-Space Neural Networks
,”
Neural Adaptive Control Technol.
,
15
(
1
), pp.
237
264
.
13.
Pillonetto
,
G.
, and
De Nicolao
,
G.
,
2010
, “
A New Kernel-Based Approach for Linear System Identification
,”
Automatica
,
46
(
1
), pp.
81
93
.
14.
Hong
,
X.
,
Mitchell
,
R. J.
,
Chen
,
S.
,
Harris
,
C. J.
,
Li
,
K.
, and
Irwin
,
G. W.
,
2008
, “
Model Selection Approaches for Non-Linear System Identification: A Review
,”
Int. J. Syst. Sci.
,
39
(
10
), pp.
925
946
.
15.
Masti
,
D.
, and
Bemporad
,
A.
,
2021
, “
Learning Nonlinear State–Space Models Using Autoencoders
,”
Automatica
,
129
(
1
), p.
109666
.
16.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2017
, “
Design of Dynamic Systems Using Surrogate Models of Derivative Functions
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101402
.
17.
Gedon
,
D.
,
Wahlström
,
N.
,
Schön
,
T. B.
, and
Ljung
,
L.
,
2021
, “
Deep State Space Models for Nonlinear System Identification
,”
IFAC-PapersOnLine
,
54
(
7
), pp.
481
486
.
18.
Schön
,
T. B.
,
Wills
,
A.
, and
Ninness
,
B.
,
2011
, “
System Identification of Nonlinear State-Space Models
,”
Automatica
,
47
(
1
), pp.
39
49
.
19.
van Der Voort
,
M.
,
Dougherty
,
M.
, and
Watson
,
S.
,
1996
, “
Combining Kohonen Maps With Arima Time Series Models to Forecast Traffic Flow
,”
Transp. Res. C: Emerg. Technol.
,
4
(
5
), pp.
307
318
.
20.
Ing
,
C.-K.
, and
Wei
,
C.-Z.
,
2005
, “
Order Selection for Same-Realization Predictions in Autoregressive Processes
,”
Ann. Stat.
,
33
(
5
), pp.
2423
2474
. DOI: 10.1214/009053605000000525
21.
Li
,
D.
,
2012
, “
A Note on Moving-Average Models With Feedback
,”
J. Time Ser. Anal.
,
33
(
6
), pp.
873
879
.
22.
Chang
,
S.
,
Wei
,
X.
,
Su
,
F.
,
Liu
,
C.
,
Yi
,
G.
,
Wang
,
J.
,
Han
,
C.
, and
Che
,
Y.
,
2020
, “
Model Predictive Control for Seizure Suppression Based on Nonlinear Auto-Regressive Moving-Average Volterra Model
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
10
), pp.
2173
2183
.
23.
Mustapa
,
R. F.
,
Dahlan
,
N. Y.
,
Yassin
,
A. I.
, and
Nordin
,
A. H.
,
2020
, “
Quantification of Energy Savings From an Awareness Program Using NARX-ANN in an Educational Building
,”
Energy Build.
,
215
(
1
), p.
109899
.
24.
Worden
,
K.
,
Becker
,
W. E.
,
Rogers
,
T. J.
, and
Cross
,
E. J.
,
2018
, “
On the Confidence Bounds of Gaussian Process NARX Models and Their Higher-Order Frequency Response Functions
,”
Mech. Syst. Signal Process
,
104
(
1
), pp.
188
223
.
25.
Zhang
,
Y.
,
Kimberg
,
D. Y.
,
Coslett
,
H. B.
,
Schwartz
,
M. F.
, and
Wang
,
Z.
,
2014
, “
Multivariate Lesion-Symptom Mapping Using Support Vector Regression
,”
Hum. Brain Mapp.
,
35
(
12
), pp.
5861
5876
.
26.
Tao
,
J.-W.
, and
Wang
,
S.-T.
,
2012
, “
Kernel Support Vector Machine for Domain Adaptation
,”
Zi dong hua xue bao
,
38
(
5
), pp.
797
811
. DOI:10.3724/SP.J.1004.2012.00797
27.
Papadopoulos
,
S.
,
Azar
,
E.
,
Woon
,
W.-L.
, and
Kontokosta
,
C. E.
,
2017
, “
Evaluation of Tree-Based Ensemble Learning Algorithms for Building Energy Performance Estimation
,”
J. Build. Perform. Simul.
,
11
(
3
), pp.
322
332
.
28.
Chen
,
W.
,
Zhang
,
S.
,
Li
,
R.
, and
Shahabi
,
H.
,
2018
, “
Performance Evaluation of the GIS-Based Data Mining Techniques of Best-First Decision Tree, Random Forest, and Naïve Bayes Tree for Landslide Susceptibility Modeling
,”
Sci. Total Environ.
,
644
(
1
), pp.
1006
1018
.
29.
Mantas
,
C. J.
,
Castellano
,
J. G.
,
Moral-García
,
S.
, and
Abellán
,
J.
,
2019
, “
A Comparison of Random Forest Based Algorithms: Random Credal Random Forest Versus Oblique Random Forest
,”
Soft Comput.
,
23
(
21
), pp.
10739
10754
.
30.
Loukeris
,
N.
, and
Eleftheriadis
,
I.
,
2015
, “
Further Higher Moments in Portfolio Selection and A Priori Detection of Bankruptcy, Under Multi-Layer Perceptron Neural Networks, Hybrid Neuro-Genetic MLPs, and the Voted Perceptron
,”
Int. J. Finance Econ.
,
20
(
4
), pp.
341
361
.
31.
Botvinick
,
M. M.
, and
Plaut
,
D. C.
,
2006
, “
Short-term Memory for Serial Order: A Recurrent Neural Network Model
,”
Psychol. Rev.
,
113
(
2
), pp.
201
233
.
32.
Song
,
X.
,
Liu
,
Y.
,
Xue
,
L.
,
Wang
,
J.
,
Zhang
,
J.
,
Wang
,
J.
,
Jiang
,
L.
, and
Cheng
,
Z.
,
2020
, “
Time-Series Well Performance Prediction Based on Long Short-Term Memory (LSTM) Neural Network Model
,”
J. Pet. Sci. Eng.
,
186
(
1
), p.
106682
.
33.
Chen
,
H.
,
Zhang
,
Y.
,
Kalra
,
M. K.
,
Lin
,
F.
,
Chen
,
Y.
,
Liao
,
P.
,
Zhou
,
J.
, and
Wang
,
G.
,
2017
, “
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network
,”
IEEE Trans. Med. Imaging
,
36
(
12
), pp.
2524
2535
.
34.
Pak
,
U.
,
Kim
,
C.
,
Ryu
,
U.
,
Sok
,
K.
, and
Pak
,
S.
,
2018
, “
A Hybrid Model Based on Convolutional Neural Networks and Long Short-Term Memory for Ozone Concentration Prediction
,”
Air Qual. Atmos. Health
,
11
(
8
), pp.
883
895
.
35.
Filiński
,
M.
,
Wachel
,
P.
, and
Tiels
,
K.
,
2021
,
Low-Dimensional Decompositions for Nonlinear Finite Impulse Response Modeling
,
Springer International Publishing
,
Springer, Cham
, pp.
352
359
.
36.
Shokry
,
A.
,
Baraldi
,
P.
,
Zio
,
E.
, and
Espuña
,
A.
,
2020
, “
Dynamic Surrogate Modeling for Multistep-Ahead Prediction of Multivariate Nonlinear Chemical Processes
,”
Ind. Eng. Chem. Res.
,
59
(
35
), pp.
15634
15655
.
37.
Piga
,
D.
, and
Tóth
,
R.
,
2014
, “
A Bias-Corrected Estimator for Nonlinear Systems with Output-Error Type Model Structures
,”
Automatica
,
50
(
9
), pp.
2373
2380
.
38.
Rahrooh
,
A.
, and
Shepard
,
S.
,
2009
, “
Identification of Nonlinear Systems Using NARMAX Model
,”
Nonlinear Anal. Theory Methods Appl.
,
71
(
12
), pp.
e1198
e1202
.
39.
ElSaid
,
A.
,
El Jamiy
,
F.
,
Higgins
,
J.
,
Wild
,
B.
, and
Desell
,
T.
,
2018
, “
Optimizing Long Short-Term Memory Recurrent Neural Networks Using Ant Colony Optimization to Predict Turbine Engine Vibration
,”
Appl. Soft Comput.
,
73
(
1
), pp.
969
991
.
40.
Xue
,
P.
,
Jiang
,
Y.
,
Zhou
,
Z.
,
Chen
,
X.
,
Fang
,
X.
, and
Liu
,
J.
,
2019
, “
Multi-Step Ahead Forecasting of Heat Load in District Heating Systems Using Machine Learning Algorithms
,”
Energy
,
188
(
1
). DOI: 10.1016/j.energy.2019.116085
41.
Zhan
,
X.
,
Zhang
,
S.
,
Szeto
,
W. Y.
, and
Chen
,
X.
,
2019
, “
Multi-Step-Ahead Traffic Speed Forecasting Using Multi-Output Gradient Boosting Regression Tree
,”
Intell. Transp. Syst.
,
24
(
2
), pp.
125
141
.
42.
Wang
,
J.
,
Jiang
,
H.
,
Wu
,
Y.
, and
Dong
,
Y.
,
2015
, “
Forecasting Solar Radiation Using an Optimized Hybrid Model by Cuckoo Search Algorithm
,”
Energy
,
81
(
1
), pp.
627
644
.
43.
Brownlee
,
J.
,
2017
, “
4 Strategies for Multi-Step Time Series Forecasting
,” https://machinelearningmastery.com/multi-step-time-series-forecasting/, Accessed August 15, 2021.
44.
Yu
,
H.
,
Chung
,
C. Y.
,
Wong
,
K. P.
,
Lee
,
H. W.
, and
Zhang
,
J. H.
,
2009
, “
Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition
,”
IEEE Trans. Power Syst.
,
24
(
2
), pp.
661
667
.
45.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
46.
Johnson
,
M. E.
,
Moore
,
L. M.
, and
Ylvisaker
,
D.
,
1990
, “
Minimax and Maximin Distance Designs
,”
J. Stat. Plan. Inference
,
26
(
2
), pp.
131
148
.
47.
Hu
,
Z.
,
Hu
,
C.
,
Mourelatos
,
Z. P.
, and
Mahadevan
,
S.
,
2019
, “
Model Discrepancy Quantification in Simulation-Based Design of Dynamical Systems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011401
.
48.
Lee
,
H. I.
,
Choi
,
I. Y.
,
Moon
,
H. S.
, and
Kim
,
J. K.
,
2020
, “
A Multi-Period Product Recommender System in Online Food Market Based on Recurrent Neural Networks
,”
Sustainability (Basel, Switzerland)
,
12
(
3
), p.
969
. DOI:10.3390/su12030969
49.
Zhou
,
L.
,
2020
, “
Product Advertising Recommendation in e-Commerce Based on Deep Learning and Distributed Expression
,”
Electron. Commer. Res.
,
20
(
2
), pp.
321
342
.
50.
Jiang
,
X.
,
Sun
,
J.
,
Li
,
C.
, and
Ding
,
H.
,
2018
, “
Video Image Defogging Recognition Based on Recurrent Neural Network
,”
IEEE Trans. Industr. Inform.
,
14
(
7
), pp.
3281
3288
.
51.
Li
,
S.
,
Xie
,
G.
,
Ren
,
J.
,
Guo
,
L.
,
Yang
,
Y.
, and
Xu
,
X.
,
2020
, “
Urban PM 2.5 Concentration Prediction via Attention-Based CNN–LSTM
,”
Appl. Sci.
,
10
(
6
), p.
1953
.
52.
Tian
,
Y.
,
Zhang
,
K.
,
Li
,
J.
,
Lin
,
X.
, and
Yang
,
B.
,
2018
, “
LSTM-Based Traffic Flow Prediction With Missing Data
,”
Neurocomputing
,
318
(
1
), pp.
297
305
.
53.
Li
,
Y.
,
Su
,
H.
,
Qi
,
C. R.
,
Fish
,
N.
,
Cohen-Or
,
D.
, and
Guibas
,
L. J.
,
2015
, “
Joint Embeddings of Shapes and Images via CNN Image Purification
,”
ACM Trans. Graph.
,
34
(
6
), pp.
1
12
. DOI:10.1145/2816795.2818071
54.
Sarin
,
H.
,
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Barbat
,
S.
, and
Yang
,
R.-J.
,
2008
, “
A Comprehensive Metric for Comparing Time Histories in Validation of Simulation Models With Emphasis on Vehicle Safety Applications
,”
Proc. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
, pp.
1275
1286
.
55.
Ao
,
D.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Dynamics Model Validation Using Time-Domain Metrics
,”
J. Verif. Valid. Uncertain. Quantif.
,
2
(
1
), p.
011004
.
56.
Sarin
,
H.
,
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Barbat
,
S.
, and
Yang
,
R.-J.
,
2010
, “
Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics
,”
J. Dyn. Syst. Meas. Control
,
132
(
6
), p.
061401
.
57.
Wiggins
,
S.
,
1987
, “
Chaos in the Quasiperiodically Forced Duffing Oscillator
,”
Phys. Lett. A
,
124
(
3
), pp.
138
142
.
58.
Pei
,
J.-S.
,
Gay-Balmaz
,
F.
,
Luscher
,
D. J.
,
Beck
,
J. L.
,
Todd
,
M. D.
,
Wright
,
J. P.
,
Qiao
,
Y.
,
Quadrelli
,
M. B.
,
Farrar
,
C. R.
, and
Lieven
,
N. A.
,
2021
, “
Connecting Mem-Models With Classical Theories
,”
Nonlinear Dyn.
,
103
(
2
), pp.
1321
1344
.
59.
Bouc
,
R.
,
1967
, “
Forced Vibrations of Mechanical Systems With Hysteresis
,”
Proceedings of the Fourth Conference on Nonlinear Oscillations
,
Prague
,
Sept. 5–9
, p.
315
.
60.
Bouc
,
R.
,
1971
, “
A Mathematical Model for Hysteresis
,”
Acta Acust. United Acust.
,
24
(
1
), pp.
16
25
.
61.
Wen
,
Y.-K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech.
,
102
(
2
), pp.
249
263
.
62.
Lei
,
Y.
,
Wu
,
Y.
, and
Li
,
T.
,
2012
, “
Identification of Non-Linear Structural Parameters Under Limited Input and Output Measurements
,”
Int. J. Non Linear Mech.
,
47
(
10
), pp.
1141
1146
.
You do not currently have access to this content.