This paper studies the dynamics of a self-excited oscillator with two external periodic forces. Both the nonresonant and resonant states of the oscillator are considered. The hysteresis boundaries are derived in terms of the system’s parameters. The stability conditions of periodic oscillations are derived. Routes to chaos are investigated both from direct numerical simulation and from analog simulation of the model describing the forced oscillator. One of the most important contributions of this work is to provide a set of reliable analytical expressions (formulas) describing the system’s behavior. These are of great importance to design engineers. The reliability of the analytical formulas is demonstrated by a very good agreement with the results obtained by both the numeric and experimental analyses.

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
2.
Hayashi
,
C.
, 1964,
Nonlinear Oscillations in Physical Systems
,
McGraw-Hill
,
New York
.
3.
Chedjou
,
J. C.
,
Fotsin
,
H. B.
, and
Woafo
,
P.
, 1997, “
Behavior of the van der Pol Oscillator With Two External Periodic Forces
,”
Phys. Scr.
0031-8949,
55
, pp.
390
393
.
4.
Carrol
,
T. L.
, 1995, “
Communicating With Use of Filtered, Synchronized, Chaotic Signals
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
42
, pp.
105
110
.
5.
Cartwright
,
M. L.
, and
Littlewood
,
J. E.
, 1945, “
On Nonlinear Differential Equations of Second Order, I: The Equation ÿ+k(1−y2)ẏ+y=bλkcos(λt+a), k large
,”
J. Lond. Math. Soc.
0024-6107,
20
, pp.
180
189
.
6.
Inaba
,
N.
, and
Mori
,
S.
, 1992, “
Folded Torus in the Forced Rayleigh Oscillator With Diode Pair
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
39
, pp.
402
411
.
7.
Belogortsev
,
A. B.
, 1992,
Phys. Lett. A
0375-9601,
161
, pp.
352
361
.
8.
Fotsin
,
H. B.
,
Chedjou
,
J. C.
, and
Woafo
,
P.
, 1996, “
Resonance, Fractal Basin Boundary and Chaotic Behaviour of an Anharmonic Oscillator With Two External Periodic Forces
,”
Phys. Scr.
0031-8949,
54
, pp.
545
548
.
9.
Bergé
,
P.
,
Pomean
,
Y.
, and
Vidal
,
C.
, 1984,
L’Ordre Dans le Chaos
,
Hermann
,
Paris
.
10.
Hamill
,
D. C.
, 1993, “
Learning About Chaotic Circuits With Spice
,”
IEEE Trans. Educ.
0018-9359,
36
, pp.
28
35
.
11.
Parker
,
T. S.
, and
Chua
,
L. O.
, 1987, “
Chaos: A Tutorial for Engineers
,”
Proc. IEEE
0018-9219,
75
, pp.
982
1008
.
12.
Jonhson
,
C. I.
, 1963,
Analog Computer Techniques
,
McGraw-Hill
,
New York
.
13.
Chedjou
,
J. C.
,
Fotsin
,
H. B.
,
Woafo
,
P.
, and
Domngang
,
S.
, 2001, “
Analog Simulation of the Dynamics of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
48
(
6
), pp.
748
757
.
14.
Chedjou
,
J. C.
,
Woafo
,
P.
, and
Domngang
,
S.
, 2001, “
Shilnikov Chaos and Dynamics of a Self-Sustained Electromechanical Transducer
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
2
), pp.
170
174
.
15.
Woafo
,
P.
,
Chedjou
,
J. C.
, and
Fotsin
,
H. B.
, 1996, “
Dynamics of a System Consisting of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
Phys. Rev. E
1063-651X,
54
(
6
), pp.
5929
5934
.
You do not currently have access to this content.