Regulating indoor air environment is one of the core functions of building energy management system. Heating, ventilation, and air-conditioning (HVAC) control systems play an important role in adjusting the room temperature to provide occupants a desired level of comfort. Occupant comfort has a direct effect on the energy consumption and providing an optimal balance between comfort and energy consumption is a challenging problem. This paper presents a framework for control of building HVAC systems using a methodology based on power-shaping paradigm that exploits the passivity property of a system. The system dynamics are expressed in the Brayton–Moser (BM) form which exhibits a gradient structure with the mixed-potential function, which has the units of power. The power-shaping technique is used to synthesize the controller by assigning a desired power function to the closed-loop dynamics so as to make the equilibrium point asymptotically stable. The proposed methodology is demonstrated on HVAC subsystems: RC network building zone model and a heat exchanger system.

References

1.
DOE,
2011
,
Buildings Energy Data Book, Energy Efficiency and Renewable Energy
,
US Department of Energy
, Washington, DC.http://web.archive.org/web/20130214012609/http:/buildingsdatabook.eren.doe.gov/default.aspx
2.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.
3.
Dounis
,
A. I.
, and
Caraiscos
,
C.
,
2009
, “
Advanced Control Systems Engineering for Energy and Comfort Management in a Building Environment: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
6
), pp.
1246
1261
.
4.
Braun
,
J. E.
,
1990
, “
Reducing Energy Costs and Peak Electrical Demand Through Optimal Control of Building Thermal Storage
,”
ASHRAE Trans.
,
96
(
2
), pp.
876
888
.http://www.techstreet.com/ashrae/standards/sl-90-16-2-reducing-energy-costs-and-peak-electrical-demand-through-optimal-control-of-building-thermal-storage?product_id=1717540
5.
Dincer
,
I.
,
2002
, “
On Thermal Energy Storage Systems and Applications in Buildings
,”
Energy Build.
,
34
(
4
), pp.
377
388
.
6.
Henze
,
G. P.
,
Felsmann
,
C.
, and
Knabe
,
G.
,
2004
, “
Evaluation of Optimal Control for Active and Passive Building Thermal Storage
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
173
183
.
7.
Henze
,
G. P.
,
2005
, “
Energy and Cost Minimal Control of Active and Passive Building Thermal Storage Inventory
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
343
351
.
8.
Ma
,
Y.
,
2013
,
Model Predictive Control for Energy Efficient Buildings
,
University of California
,
Berkeley, Berkeley, CA
.
9.
Oldewurtel
,
F.
,
Parisio
,
A.
,
Jones
,
C. N.
,
Gyalistras
,
D.
,
Gwerder
,
M.
,
Stauch
,
V.
,
Lehmann
,
B.
, and
Morari
,
M.
,
2012
, “
Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control
,”
Energy Build.
,
45
, pp.
15
27
.
10.
McBee
,
B. K.
,
2011
, “
Computational Approaches to Improving Room Heating and Cooling for Energy Efficiency in Buildings
,”
Ph.D. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/28911
11.
Mukherjee
,
S.
,
Mishra
,
S.
, and
Wen
,
J. T.
,
2012
, “
Building Temperature Control: A Passivity-Based Approach
,” IEEE 51st Annual Conference on Decision and Control (
CDC)
, Maui, HI, Dec. 10–13, pp.
6902
6907
.
12.
Ma
,
Y.
,
Anderson
,
G.
, and
Borrelli
,
F.
,
2011
, “
A Distributed Predictive Control Approach to Building Temperature Regulation
,” American Control Conference (
ACC
), San Francisco, CA, June 29–July 1, pp.
2089
2094
.
13.
Deng
,
K.
,
Goyal
,
S.
,
Barooah
,
P.
, and
Mehta
,
P. G.
,
2014
, “
Structure-Preserving Model Reduction of Nonlinear Building Thermal Models
,”
Automatica
,
50
(
4
), pp.
1188
1195
.
14.
Ma
,
Y.
,
Kelman
,
A.
,
Daly
,
A.
, and
Borrelli
,
F.
,
2012
, “
Predictive Control for Energy Efficient Buildings With Thermal Storage
,”
IEEE Control Syst. Mag.
,
32
(
1
), pp.
44
64
.
15.
Chinde
,
V.
,
Heylmun
,
J. C.
,
Kohl
,
A.
,
Jiang
,
Z.
,
Sarkar
,
S.
, and
Kelkar
,
A.
,
2015
, “
Comparative Evaluation of Control-Oriented Zone Temperature Prediction Modeling Strategies in Buildings
,”
ASME
Paper No. DSCC2015-9864.
16.
van der Schaft
,
A.
, and
Jeltsema
,
D.
,
2014
, “
Port-Hamiltonian Systems Theory: An Introductory Overview
,”
Foundations and Trends in Systems and Control
, Vol.
1
, Now Publishers, Inc., Breda, The Netherlands.
17.
Ortega
,
R.
,
Perez
,
J. A. L.
,
Nicklasson
,
P. J.
, and
Sira-Ramirez
,
H.
,
2013
,
Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications
,
Springer Science and Business Media
, London.
18.
Chopra
,
N.
, and
Spong
,
M. W.
,
2006
, “
Passivity-Based Control of Multi-Agent Systems
,”
Advances in Robot Control
,
Springer
, Berlin, pp.
107
134
.
19.
Arcak
,
M.
,
2006
, “
Passivity as a Design Tool for Group Coordination
,”
IEEE Trans. Autom. Control
, 52(8), pp. 1380–1390.
20.
Brayton
,
R.
, and
Moser
,
J.
,
1964
, “
A Theory of Nonlinear Networks I
,”
Q. Appl. Math.
,
22
(
1
), pp.
1
33
.
21.
Ortega
,
R.
,
Jeltsema
,
D.
, and
Scherpen
,
J. M.
,
2003
, “
Power Shaping: A New Paradigm for Stabilization of Nonlinear RLC Circuits
,”
IEEE Trans. Autom. Control
,
48
(
10
), pp.
1762
1767
.
22.
Jeltsema
,
D.
, and
Scherpen
,
J. M.
,
2007
, “
A Power-Based Description of Standard Mechanical Systems
,”
Syst. Control Lett.
,
56
(
5
), pp.
349
356
.
23.
García-Canseco
,
E.
,
Jeltsema
,
D.
,
Ortega
,
R.
, and
Scherpen
,
J. M.
,
2010
, “
Power-Based Control of Physical Systems
,”
Automatica
,
46
(
1
), pp.
127
132
.
24.
Favache
,
A.
, and
Dochain
,
D.
,
2010
, “
Power-Shaping Control of Reaction Systems: The CSTR Case
,”
Automatica
,
46
(
11
), pp.
1877
1883
.
25.
Borja
,
P.
,
Cisneros
,
R.
, and
Ortega
,
R.
,
2015
, “
Shaping the Energy of Port-Hamiltonian Systems Without Solving PDE's
,” 54th IEEE Conference on Decision and Control (
CDC
), Osaka, Japan, Dec. 15–18, pp.
5713
5718
.
26.
Pasumarthy
,
R.
,
Kosaraju
,
K. C.
, and
Chandrasekar
,
A.
,
2014
, “
On Power Balancing and Stabilization for a Class of Infinite-Dimensional Systems
,” International Symposium on Mathematical Theory of Networks and Systems (
MTNS
), Groningen, The Netherlands, July 7–11, pp. 819–825.http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0416.pdf
27.
Kosaraju
,
K. C.
, and
Pasumarthy
,
R.
,
2015
, “
Power-Based Methods for Infinite-Dimensional Systems
,”
Mathematical Control Theory I
,
Springer
, Cham, Switzerland, pp.
277
301
.
28.
Kosaraju
,
K. C.
,
Pasumarthy
,
R.
, and
Jeltsema
,
D.
,
2015
, “
Alternative Passive Maps for Infinite-Dimensional Systems Using Mixed-Potential Functions
,”
IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control
, Lyon, France, July 4–7, pp. 1–6.https://doi.org/10.1016/j.ifacol.2015.10.205
29.
Igarashi
,
Y.
,
Hatanaka
,
T.
,
Fujita
,
M.
, and
Spong
,
M. W.
,
2009
, “
Passivity-Based Attitude Synchronization in SE(3)
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
1119
1134
.
30.
Van der Schaft
,
A.
, and
Maschke
,
B.
,
2013
, “
Port-Hamiltonian Systems on Graphs
,”
SIAM J. Control Optim.
,
51
(
2
), pp.
906
937
.
31.
Chinde
,
V.
,
Kosaraju
,
K.
,
Kelkar
,
A.
,
Pasumarthy
,
R.
,
Sarkar
,
S.
, and
Singh
,
N.
,
2016
, “
Building HVAC Systems Control Using Power Shaping Approach
,” American Control Conference (
ACC
), Boston, MA, July 6–8, pp.
599
604
.
32.
Jeltsema
,
D.
, and
Scherpen
,
J.
,
2009
, “
Multidomain Modeling of Nonlinear Networks and Systems
,”
IEEE Control Syst.
,
29
(
4
), pp.
28
59
.
33.
Gogte
,
G.
,
Venkatesh
,
C.
,
Kazi
,
F.
,
Singh
,
N.
, and
Pasumarthy
,
R.
,
2012
, “
Passivity Based Control of Underactuated 2-D Spidercrane Manipulator
,” 20th International Symposium on Mathematical Theory of Networks and Systems (
MTNS
), Melbourne, Australia, July 9–12, pp. 1–8. http://www.mtns2012.com.au/files/presentations/SE43/mtns.pdf
34.
Satpute
,
S.
,
Mehra
,
R.
,
Kazi
,
F.
, and
Singh
,
N.
,
2014
, “
Geometric—PBC Approach for Control of Circular Ball and Beam System
,” International Symposium on Mathematical Theory of Networks and Systems (
MTNS
), Groningen, The Netherlands, July 7–11, pp. 1238–1243. http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0310.pdf
35.
Donaire
,
A.
,
Mehra
,
R.
,
Ortega
,
R.
,
Satpute
,
S.
,
Romero
,
J. G.
,
Kazi
,
F.
, and
Singh
,
N.
,
2016
, “
Shaping the Energy of Mechanical Systems Without Solving Partial Differential Equations
,”
IEEE Trans. Autom. Control
,
61
(
4
), pp.
1051
1056
.
36.
Khalil
,
H. K.
, and
Grizzle
,
J.
,
1996
,
Nonlinear Systems
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
37.
Atam
,
E.
, and
Helsen
,
L.
,
2016
, “
Control-Oriented Thermal Modeling of Multizone Buildings: Methods and Issues: Intelligent Control of a Building System
,”
IEEE Control Syst.
,
36
(
3
), pp.
86
111
.
38.
Gao
,
N.
, and
Niu
,
J.
,
2004
, “
CFD Study on Micro-Environment Around Human Body and Personalized Ventilation
,”
Build. Environ.
,
39
(
7
), pp.
795
805
.
39.
Goyal
,
S.
, and
Barooah
,
P.
,
2010
, “
Modeling Thermal Dynamics in Multi-Zone Buildings
,” University of Florida, Gainesville, FL, Technical Report No. 10.
40.
Gouda
,
M.
,
Underwood
,
C.
, and
Danaher
,
S.
,
2003
, “
Modelling the Robustness Properties of HVAC Plant Under Feedback Control
,”
Build. Serv. Eng. Res. Technol.
,
24
(
4
), pp.
271
280
.
41.
Travesi
,
J.
,
Maxwell
,
G.
,
Klaassen
,
C.
,
Holtz
,
M.
,
Knabe
,
G.
,
Felsmann
,
C.
,
Achermann
,
M.
, and
Behne
,
M.
,
2001
, “
Empirical Validation of Iowa Energy Resource Station Building Energy Analysis Simulation Models
,” International Energy Agency, Paris, France, Report No.
Task 22
.http://archive.iea-shc.org/publications/downloads/Iowa_Energy_Report.pdf
42.
ERS
,
2015
, “
Energy Resource Station Technical Description
,” Iowa Energy Center, Ankeny, IA, accessed June 1, 2017, http://www.iowaenergycenter.org/energy-resource-station-ers/
43.
Wilcox
,
S.
, and
Marion
,
W.
,
2008
, “
Users Manual for TMY3 Data Sets
,” National Renewable Energy Laboratory, Golden, CO.
44.
Cøengel
,
Y.
,
2007
,
Heat and Mass Transfer: A Practical Approach
, McGraw-Hill, New York.
You do not currently have access to this content.