Abstract
In this paper, we propose a novel collocation method based on hybrid functions to identify the parameters and differential orders of fractional order systems (FOS). The hybrid functions consist of block-pulse functions and Taylor polynomials. The analytical form of Riemann–Liouville fractional order integral operator of these hybrid functions is derived using the Laplace transform. Then the integral operator is utilized, in conjunction with collocation points, to convert the FOS into an algebraic system directly. The parameters and differential orders of the FOS are estimated by minimizing the error between the output of the actual system and that of the estimated system. The effectiveness of the proposed method is verified through four examples.