Abstract

Mitigating the massive emissions of greenhouse gases is one of the main measures taken to resolve the current growing climate problems. The electrochemical reduction of carbon dioxide to economically valuable chemical fuels has attracted the intensive attention of scholars. This review provides an overview of the application of conductive diamond in electrocatalytic reduction and outlines the improvement of electrochemical properties by employing metal particles to modify the surface. Meanwhile, the carbon-based electrode materials represented by glassy carbon and diamond-like carbon also have broad research value. Emphasis is placed on the electrochemical properties of boron-doped, transition metal modification, and co-doped diamond film electrodes with appropriate extensions. The carbon-chain compounds produced by the reduction reaction are also briefly described, mainly using formic acid and ethanol as examples, and focusing on the switchable selectivity of the multi-carbon products. In addition, the development directions of electrochemical reduction technology are prospected.

References

1.
Cao
,
L.
, and
Caldeira
,
K.
,
2008
, “
Atmospheric CO2 Stabilization and Ocean Acidification
,”
Geophys. Res. Lett.
,
35
(
19
), p.
19609
.
2.
Zhang
,
S.
,
Jiang
,
J.
,
Wang
,
H.
,
Li
,
F.
,
Hua
,
T.
, and
Wang
,
W.
,
2021
, “
A Review of Microbial Electrosynthesis Applied to Carbon Dioxide Capture and Conversion: The Basic Principles, Electrode Materials, and Bioproducts
,”
J. CO2 Util.
,
51
(
20
), p.
101640
.
3.
Nguyen
,
T. N.
, and
Dinh
,
C.-T.
,
2020
, “
Gas Diffusion Electrode Design for Electrochemical Carbon Dioxide Reduction
,”
Chem. Soc. Rev.
,
49
(
21
), pp.
7488
7504
.
4.
Kibria
,
M. G.
,
Edwards
,
J. P.
,
Gabardo
,
C. M.
,
Cao-Thang
,
D.
,
Seifitokaldani
,
A.
,
Sinton
,
D.
, and
Sargent
,
E. H.
,
2019
, “
Electrochemical CO2 Reduction Into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design
,”
Adv. Mater.
,
31
(
31
), p.
1807166
.
5.
Rabiee
,
H.
,
Ge
,
L.
,
Zhang
,
X.
,
Hu
,
S.
,
Li
,
M.
, and
Yuan
,
Z.
,
2021
, “
Gas Diffusion Electrodes (GDEs) for Electrochemical Reduction of Carbon Dioxide, Carbon Monoxide, and Dinitrogen to Value-Added Products: A Review
,”
Energy Environ. Sci.
,
14
(
4
), pp.
1959
2008
.
6.
Wu
,
J.
,
Huang
,
Y.
,
Ye
,
W.
, and
Li
,
Y.
,
2017
, “
CO2 Reduction: From the Electrochemical to Photochemical Approach
,”
Adv. Sci.
,
4
(
11
), p.
1700194
.
7.
Bai
,
X.-F.
,
Chen
,
W.
,
Wang
,
B.-Y.
,
Feng
,
G.-H.
,
Wei
,
W.
,
Jiao
,
Z.
, and
Sun
,
Y.-H.
,
2017
, “
Recent Progress on Electrochemical Reduction of Carbon Dioxide
,”
Acta Phys. Chim. Sin.
,
33
(
12
), pp.
2388
2403
.
8.
Luo
,
Y.
,
Zhang
,
K.
,
Li
,
Y.
, and
Wang
,
Y.
,
2021
, “
Valorizing Carbon Dioxide Via Electrochemical Reduction on Gas-Diffusion Electrodes
,”
Infomat
,
3
(
12
), pp.
1313
1332
.
9.
Nakabayashi
,
Y.
,
Hirano
,
Y.
,
Sakurai
,
Y.
,
Okazaki
,
A.
,
Kuriyama
,
H.
,
Roy
,
N.
,
Suzuki
,
N.
, et al
,
2018
, “
Positive Shift in the Potential of Photo-Electrochemical CO2 Reduction to CO on Ag-Loaded Boron-Doped Diamond Electrode by an Electrochemical Pre-Treatment
,”
J. Appl. Electrochem.
,
48
(
1
), pp.
61
73
.
10.
Sastre
,
F.
,
Puga
,
A. V.
,
Liu
,
L.
,
Corma
,
A.
, and
Garcia
,
H.
,
2014
, “
Complete Photocatalytic Reduction of CO2 to Methane by h-2 Under Solar Light Irradiation
,”
J. Am. Chem. Soc.
,
136
(
19
), pp.
6798
6801
.
11.
Pander
,
J. E.
,
Ren
,
D.
,
Huang
,
Y.
,
Loo
,
N. W. X.
,
Hong
,
S. H. L.
, and
Yeo
,
B. S.
,
2018
, “
Understanding the Heterogeneous Electrocatalytic Reduction of Carbon Dioxide on Oxide-Derived Catalysts
,”
ChemElectroChem
,
5
(
2
), pp.
219
237
.
12.
Chan
,
K.
,
Tsai
,
C.
,
Hansen
,
H. A.
, and
Norskov
,
J. K.
,
2014
, “
Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction
,”
ChemCatChem
,
6
(
7
), pp.
1899
1905
.
13.
Garg
,
S.
,
Li
,
M.
,
Weber
,
A. Z.
,
Ge
,
L.
,
Li
,
L.
,
Rudolph
,
V.
,
Wang
,
G.
, and
Rufford
,
T. E.
,
2020
, “
Advances and Challenges in Electrochemical CO2 Reduction Processes: An Engineering and Design Perspective Looking Beyond New Catalyst Materials
,”
J. Mater. Chem. A
,
8
(
4
), pp.
1511
1544
.
14.
Zhu
,
D. D.
,
Liu
,
J. L.
, and
Qiao
,
S. Z.
,
2016
, “
Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide
,”
Adv. Mater.
,
28
(
18
), pp.
3423
3452
.
15.
Fang
,
Y.
, and
Flake
,
J. C.
,
2017
, “
Electrochemical Reduction of CO2 at Functionalized Au Electrodes
,”
J. Am. Chem. Soc.
,
139
(
9
), pp.
3399
3405
.
16.
Sangiorgi
,
N.
,
Tuci
,
G.
,
Sanson
,
A.
,
Peruzzini
,
M.
, and
Giambastiani
,
G.
,
2019
, “
Metal-Free Carbon-Based Materials for Electrocatalytic and Photo-Electrocatalytic CO2 Reduction
,”
Rend. Lincei Sci. Fis. Nat.
,
30
(
3
), pp.
497
513
.
17.
Liu
,
Z.
,
Wang
,
Z.
,
Qing
,
S.
,
Xue
,
N.
,
Jia
,
S.
,
Zhang
,
L.
,
Li
,
L.
,
Li
,
N.
,
Shi
,
L.
, and
Chen
,
J.
,
2018
, “
Improving Methane Selectivity of Photo-Induced CO2 Reduction on Carbon Dots Through Modification of Nitrogen-Containing Groups and Graphitization
,”
Appl. Catal. B
,
232
, pp.
86
92
.
18.
Akhundi
,
A.
,
Habibi-Yangjeh
,
A.
,
Abitorabi
,
M.
, and
Pouran
,
S. R.
,
2019
, “
Review on Photocatalytic Conversion of Carbon Dioxide to Value-Added Compounds and Renewable Fuels by Graphitic Carbon Nitride-Based Photocatalysts
,”
Catal. Rev. Sci. Eng.
,
61
(
4
), pp.
595
628
.
19.
Yang
,
N.
,
Yu
,
S.
,
Macpherson
,
J. V.
,
Einaga
,
Y.
,
Zhao
,
H.
,
Zhao
,
G.
,
Swain
,
G. M.
, and
Jiang
,
X.
,
2019
, “
Conductive Diamond: Synthesis, Properties, and Electrochemical Applications
,”
Chem. Soc. Rev.
,
48
(
1
), pp.
157
204
.
20.
Yang
,
N.
,
Foord
,
J. S.
, and
Jiang
,
X.
,
2016
, “
Diamond Electrochemistry at the Nanoscale: A Review
,”
Carbon
,
99
, pp.
90
110
.
21.
Luo
,
D.
,
Nakata
,
K.
,
Fujishima
,
A.
, and
Liu
,
S.
,
2017
, “
Photochemistry and Photo-Electrochemistry on Synthetic Semiconducting Diamond
,”
J. Photochem. Photobiol. C
,
31
, pp.
139
152
.
22.
Pleskov
,
Y. V.
,
Krotova
,
M. D.
,
Elkin
,
V. V.
,
Varnin
,
V. P.
, and
Teremetskaya
,
I. G.
,
2013
, “
Characterization of CVD Diamond Thin Film Electrodes in Terms of Their Semiconductivity
,”
Electrocatalysis
,
4
(
4
), pp.
241
244
.
23.
Eguiluz
,
K. I. B.
,
Peralta-Hernández
,
J. M.
,
Hernández-Ramírez
,
A.
,
Guzmán-Mar
,
J. L.
,
Hinojosa-Reyes
,
L.
,
Martínez-Huitle
,
C. A.
, and
Salazar-Banda
,
G. R.
,
2012
, “
The Use of Diamond for Energy Conversion System Applications: A Review
,”
Int. J. Electrochem.
,
2012
, pp.
1
20
.
24.
Rodrigo
,
M. A.
,
Canizares
,
P.
,
Sanchez-Carretero
,
A.
, and
Saez
,
C.
,
2010
, “
Use of Conductive-Diamond Electrochemical Oxidation for Wastewater Treatment
,”
Catal. Today
,
151
(
1–2
), pp.
173
177
.
25.
Medina-Sanchez
,
M.
,
Mayorga-Martinez
,
C. C.
,
Watanabe
,
T.
,
Ivandini
,
T. A.
,
Honda
,
Y.
,
Pino
,
F.
,
Nakata
,
K.
,
Fujishima
,
A.
,
Einaga
,
Y.
, and
Merkoci
,
A.
,
2016
, “
Microfluidic Platform for Environmental Contaminants Sensing and Degradation Based on Boron-Doped Diamond Electrodes
,”
Biosens. Bioelectron.
,
75
, pp.
365
374
.
26.
Fernandes da Costa
,
P. R.
,
dos Santos
,
E. V.
,
Peralta-Hernandez
,
J. M.
,
Salazar-Banda
,
G. R.
,
da Silva
,
D. R.
, and
Martinez-Huitle
,
C. A.
,
2015
, “
Modified Diamond Electrodes for Electrochemical Systems for Energy Conversion and Storage
,”
Top. Appl. Phys.
,
121
, pp.
205
235
.
27.
Yu
,
S.
,
Yang
,
N.
,
Liu
,
S.
, and
Jiang
,
X.
,
2021
, “
Electrochemical and Photochemical CO2 Reduction Using Diamond
,”
Carbon
,
175
(
4
), pp.
440
453
.
28.
Zalieckas
,
J.
,
Pobedinskas
,
P.
,
Greve
,
M. M.
,
Eikehaug
,
K.
,
Haenen
,
K.
, and
Holst
,
B.
,
2021
, “
Large Area Microwave Plasma CVD of Diamond Using Composite Right/Left-Handed Materials
,”
Diamond Relat. Mater.
,
116
(
7
), p.
108394
.
29.
Kim
,
H.-Y.
,
Kim
,
D.-S.
,
Kim
,
K.-S.
, and
Hwang
,
N.-M.
,
2020
, “
Various Allotropes of Diamond Nanoparticles Generated in the Gas Phase During Hot Filament Chemical Vapor Deposition
,”
Nanomaterials
,
10
(
12
), p.
2504
.
30.
Shen
,
B.
,
Sun
,
F.
, and
Yang
,
G.
,
2010
, “
Study on the Friction Behavior of HFCVD Diamond Films on Silicon Nitride Substrates
,”
Adv. Mater. Res.
,
135
, pp.
143
148
. www.scientific.net/amr.135.143
31.
Hatada
,
R.
,
Flege
,
S.
,
Ensinger
,
W.
, and
Baba
,
K.
,
2020
, “
Deposition of Diamond-Like Carbon Films on Insulating Substrates by Plasma Source Ion Implantation
,”
Surf. Coat. Technol.
,
385
, p.
125426
.
32.
Sumikura
,
H.
,
Hirama
,
K.
,
Nishiguchi
,
K.
,
Shinya
,
A.
, and
Notomi
,
M.
,
2020
, “
Highly Nitrogen-Vacancy Doped Diamond Nanostructures Fabricated by Ion Implantation and Optimum Annealing
,”
APL Mater.
,
8
(
3
), p.
031113
.
33.
Liu
,
J. W.
,
Teraji
,
T.
,
Da
,
B.
,
Ohsato
,
H.
, and
Koide
,
Y.
,
2020
, “
Effect of Annealing Temperature on Performances of Boron-Doped Diamond Metal-Semiconductor Field-Effect Transistors
,”
IEEE Trans. Electron. Dev.
,
67
(
4
), pp.
1680
1685
.
34.
Hu
,
H.
,
Hu
,
X. J.
,
Bai
,
B. W.
, and
Chen
,
X. H.
,
2012
, “
Effects of Annealing Time on the Microstructural and Electrochemical Properties of b-Doped Nanocrystalline Diamond Films
,”
Acta Phys. Sin.
,
61
(
14
), p.
148101
.
35.
Fu
,
X.
,
Xu
,
Z.
,
He
,
Z.
,
Hartmaier
,
A.
, and
Fang
,
F.
,
2019
, “
Molecular Dynamics Simulation of Silicon Ion Implantation Into Diamond and Subsequent Annealing
,”
Nucl. Instrum. Methods B
,
450
, pp.
51
55
.
36.
Li
,
X.
,
Ke
,
P.
, and
Wang
,
A.
,
2015
, “
Ab Initio Molecular Dynamics Simulation on Stress Reduction Mechanism of Ti-Doped Diamond-Like Carbon Films
,”
Thin Solid Films
,
584
, pp.
204
207
.
37.
Lehtinen
,
O.
,
Naydenov
,
B.
,
Boerner
,
P.
,
Melentjevic
,
K.
,
Mueller
,
C.
,
McGuinness
,
L. P.
,
Pezzagna
,
S.
,
Meijer
,
J.
,
Kaiser
,
U.
, and
Jelezko
,
F.
,
2016
, “
Molecular Dynamics Simulations of Shallow Nitrogen and Silicon Implantation Into Diamond
,”
Phys. Rev. B
,
93
(
3
), p.
035202
.
38.
Einaga
,
Y.
,
2010
, “
Diamond Electrodes for Electrochemical Analysis
,”
J. Appl. Electrochem.
,
40
(
10
), pp.
1807
1816
.
39.
Jiwanti
,
P.
,
Natsui
,
K.
,
Nakata
,
K.
, and
Einaga
,
Y.
,
2016
, “
Selective Production of Methanol by the Electrochemical Reduction of CO2 on Boron-Doped Diamond Electrodes in Aqueous Ammonia Solution
,”
RSC Adv.
,
6
(
104
), pp.
102214
102217
.
40.
Luo
,
D.
,
Liu
,
S.
,
Nakata
,
K.
, and
Fujishima
,
A.
,
2019
, “
Electrochemical Reduction of CO2 and Degradation of khp on Boron-Doped Diamond Electrodes in a Simultaneous and Enhanced Process
,”
Chin. Chem. Lett.
,
30
(
2
), pp.
509
512
.
41.
Tomisaki
,
M.
,
Kasahara
,
S.
,
Natsui
,
K.
,
Ikemiya
,
N.
, and
Einaga
,
Y.
,
2019
, “
Switchable Product Selectivity in the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes
,”
J. Am. Chem. Soc.
,
141
(
18
), pp.
7414
7420
.
42.
Peng
,
Z.
,
Xu
,
J.
,
Kurihara
,
K.
,
Tomisaki
,
M.
, and
Einaga
,
Y.
,
2021
, “
Electrochemical CO2 Reduction on Sub-Microcrystalline Boron-Doped Diamond Electrodes
,”
Diamond Relat. Mater.
,
120
, p.
108608
.
43.
Roy
,
N.
,
Suzuki
,
N.
,
Nakabayashi
,
Y.
,
Hirano
,
Y.
,
Ikari
,
H.
,
Katsumata
,
K.-I.
,
Nakata
,
K.
,
Fujishima
,
A.
, and
Terashima
,
C.
,
2018
, “
Facile Deposition of Cu-Snox Hybrid Nanostructures on Lightly Boron-Doped Diamond Electrodes for CO2 Reduction
,”
ChemElectroChem
,
5
(
18
), pp.
2542
2550
.
44.
Luo
,
D.
,
Ma
,
D.
,
Liu
,
S.
,
Nakata
,
K.
,
Fujishima
,
A.
, and
Wu
,
L.
,
2022
, “
Electrochemical Reduction of CO2 on Fluorine-Modified Boron-Doped Diamond Electrode
,”
Diamond Relat. Mater.
,
121
, p.
108753
.
45.
Xu
,
J.
, and
Einaga
,
Y.
,
2020
, “
Effect of sp(2) Species in a Boron-Doped Diamond Electrode on the Electrochemical Reduction of CO2
,”
Electrochem. Commun.
,
115
, p.
106731
.
46.
Liu
,
Y.
,
Chen
,
S.
,
Quan
,
X.
, and
Yu
,
H.
,
2015
, “
Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond
,”
J. Am. Chem. Soc.
,
137
(
36
), pp.
11631
11636
.
47.
Wang
,
H.
,
Tzeng
,
Y.-K.
,
Ji
,
Y.
,
Li
,
Y.
,
Li
,
J.
,
Zheng
,
X.
,
Yang
,
A.
, et al
,
2020
, “
Synergistic Enhancement of Electrocatalytic CO2 Reduction to C-2 Oxygenates at Nitrogen-Doped Nanodiamonds/Cu Interface
,”
Nat. Nanotechnol.
,
15
(
2
), pp.
131
137
.
48.
Naragino
,
H.
,
Saitoh
,
Y.
, and
Honda
,
K.
,
2022
, “
Electrochemical Reduction of Carbon Dioxide in an Aqueous Solution Using Phosphorus-Doped Polycrystalline Diamond Electrodes
,”
Electrochem. Commun.
,
134
(
6
), p.
107164
.
49.
Yang
,
B.
,
Peng
,
X.
,
Huang
,
C.
,
Zhao
,
Y.
,
Chen
,
X.
,
Zhang
,
G.
, and
Fu
,
T.
,
2019
, “
Toughening and Maintaining Strength of Diamond With Substitutional Doping Boron and Nitrogen
,”
J. Alloys Compd.
,
805
, pp.
1090
1095
.
50.
Souza
,
F. L.
,
Lopes
,
O. F.
,
Santos
,
E. V.
, and
Ribeiro
,
C.
,
2022
, “
Promoting CO2 Electroreduction on Boron-Doped Diamond Electrodes: Challenges and Trends
,”
Curr. Opin. Electrochem.
,
32
, p.
100890
.
51.
Freitas
,
J. M.
,
TdC
,
O.
,
Abarza Munoz
,
R. A.
, and
Richter
,
E. M.
,
2019
, “
Boron Doped Diamond Electrodes in Flow-Based Systems
,”
Front. Chem.
,
7
, p.
190
.
52.
Einaga
,
Y.
,
2022
, “
Application of Boron-Doped Diamond Electrodes: Focusing on the Electrochemical Reduction of Carbon Dioxide
,”
Electrochemistry
,
90
(
10
), pp.
101002
101002
.
53.
Yu
,
S.
,
Yang
,
N.
,
Zhuang
,
H.
,
Meyer
,
J.
,
Mandal
,
S.
,
Williams
,
O. A.
,
Lilge
,
I.
,
Schoenherr
,
H.
, and
Jiang
,
X.
,
2015
, “
Electrochemical Supercapacitors From Diamond
,”
J. Phys. Chem. C
,
119
(
33
), pp.
18918
18926
.
54.
Zhou
,
M.
,
Zhai
,
Z.
,
Liu
,
L.
,
Zhang
,
C.
,
Yuan
,
Z.
,
Lu
,
Z.
,
Chen
,
B.
, et al
,
2021
, “
Controllable Synthesized Diamond/CNWS Film as a Novel Nanocarbon Electrode With Wide Potential Window and Enhanced s/b Ratio for Electrochemical Sensing
,”
Appl. Surf. Sci.
,
551
, p.
149418
.
55.
Manciu
,
F. S.
,
Manciu
,
M.
,
Durrer
,
W. G.
,
Salazar
,
J. G.
,
Lee
,
K. H.
, and
Bennet
,
K. E.
,
2014
, “
A Drude Model Analysis of Conductivity and Free Carriers in Boron-Doped Diamond Films and Investigations of Their Internal Stress and Strain
,”
J. Mater. Sci.
,
49
(
16
), pp.
5782
5789
.
56.
Du
,
J.
,
Fiorani
,
A.
,
Inagaki
,
T.
,
Otake
,
A.
,
Murata
,
M.
,
Hatanaka
,
M.
, and
Einaga
,
Y.
,
2022
, “
A New Pathway for CO2 Reduction Relying on the Self-Activation Mechanism of Boron-Doped Diamond Cathode
,”
JACS Au
,
2
(
6
), pp.
1375
1382
.
57.
Otake
,
A.
,
Du
,
J.
, and
Einaga
,
Y.
,
2022
, “
Activation of Boron-Doped Diamond Electrodes for Electrochemical CO2 Reduction in a Halogen-Free Electrolyte
,”
ACS Sustain. Chem. Eng.
,
10
(
44
), pp.
14445
14450
.
58.
Kageura
,
T.
,
Sasama
,
Y.
,
Shinei
,
C.
,
Teraji
,
T.
,
Yamada
,
K.
,
Onoda
,
S.
, and
Takahide
,
Y.
,
2022
, “
Charge Stability of Shallow Single Nitrogen-Vacancy Centers in Lightly Boron-Doped Diamond
,”
Carbon
,
192
, pp.
473
481
.
59.
Wang
,
Z. L.
,
Lu
,
C.
,
Li
,
J. J.
, and
Gu
,
C. Z.
,
2009
, “
Effect of Gas Composition on the Growth and Electrical Properties of Boron-Doped Diamond Films
,”
Diamond Relat. Mater.
,
18
(
2–3
), pp.
132
135
.
60.
Xu
,
J.
,
Natsui
,
K.
,
Naoi
,
S.
,
Nakata
,
K.
, and
Einaga
,
Y.
,
2018
, “
Effect of Doping Level on the Electrochemical Reduction of CO2 on Boron-Doped Diamond Electrodes
,”
Diamond Relat. Mater.
,
86
, pp.
167
172
.
61.
Wood
,
G. F.
,
Zvoriste-Walters
,
C. E.
,
Munday
,
M. G.
,
Newton
,
M. E.
,
Shkirskiy
,
V.
,
Unwin
,
P. R.
, and
Macpherson
,
J. V.
,
2021
, “
High Pressure High Temperature Synthesis of Highly Boron Doped Diamond Microparticles and Porous Electrodes for Electrochemical Applications
,”
Carbon
,
171
, pp.
845
856
.
62.
Watanabe
,
T.
,
Yoshioka
,
S.
,
Yamamoto
,
T.
,
Sepehri-Amin
,
H.
,
Ohkubo
,
T.
,
Matsumura
,
S.
, and
Einaga
,
Y.
,
2018
, “
The Local Structure in Heavily Boron-Doped Diamond and the Effect This Has on Its Electrochemical Properties
,”
Carbon
,
137
, pp.
333
342
.
63.
Bhattacharyya
,
S.
,
Auciello
,
O.
,
Birrell
,
J.
,
Carlisle
,
J.
,
Curtiss
,
L. A.
,
Goyette
,
A.
,
Gruen
,
D.
, et al
,
2001
, “
Synthesis and Characterization of Highly-Conducting Nitrogen-Doped Ultrananocrystalline Diamond Films
,”
Appl. Phys. Lett.
,
79
(
10
), pp.
1441
1443
.
64.
Rakha
,
S. A.
,
Xintai
,
Z.
,
Zhu
,
D.
, and
Guojun
,
Y.
,
2010
, “
Effects of n-2 Addition on Nanocrystalline Diamond Films by HFCVD in Ar/Ch4 Gas Mixture
,”
Curr. Appl. Phys.
,
10
(
1
), pp.
171
175
.
65.
Ayestarán Latorre
,
C.
,
Ewen
,
J. P.
,
Dini
,
D.
, and
Righi
,
M. C.
,
2021
, “
Ab Initio Insights Into the Interaction Mechanisms Between Boron, Nitrogen and Oxygen Doped Diamond Surfaces and Water Molecules
,”
Carbon
,
171
, pp.
575
584
.
66.
Cordero
,
B.
,
Gómez
,
V.
,
Platero-Prats
,
A. E.
,
Revés
,
M.
,
Echeverría
,
J.
,
Cremades
,
E.
,
Barragán
,
F.
, and
Alvarez
,
S.
,
2008
, “
Covalent Radii Revisited
,”
Dalton Trans.
,
21
(
21
), pp.
2832
2838
.
67.
Liu
,
T.
, and
Raabe
,
D.
,
2009
, “
Influence of Nitrogen Doping on Growth Rate and Texture Evolution of Chemical Vapor Deposition Diamond Films
,”
Appl. Phys. Lett.
,
94
(
2
), p.
021119
.
68.
Müller-Sebert
,
W.
,
Wörner
,
E.
,
Fuchs
,
F.
,
Wild
,
C.
, and
Koidl
,
P.
,
1996
, “
Nitrogen Induced Increase of Growth Rate in Chemical Vapor Deposition of Diamond
,”
Appl. Phys. Lett.
,
68
(
6
), pp.
759
760
.
69.
Locher
,
R.
,
Wild
,
C.
,
Herres
,
N.
,
Behr
,
D.
, and
Koidl
,
P.
,
1994
, “
Nitrogen Stabilized 〈100〉 Texture in Chemical Vapor Deposited Diamond Films
,”
Appl. Phys. Lett.
,
65
(
1
), pp.
34
36
.
70.
Matsumoto
,
T.
,
Mukose
,
T.
,
Makino
,
T.
,
Takeuchi
,
D.
,
Yamasaki
,
S.
,
Inokuma
,
T.
, and
Tokuda
,
N.
,
2017
, “
Diamond Schottky-Pn Diode Using Lightly Nitrogen-Doped Layer
,”
Diamond Relat. Mater.
,
75
, pp.
152
154
.
71.
Pleskov
,
Y. V.
,
Krotova
,
M. D.
,
Elkin
,
V. V.
,
Ralchenko
,
V. G.
,
Saveliev
,
A. V.
,
Pimenov
,
S. M.
, and
Lim
,
P. Y.
,
2007
, “
N-Type Nitrogenated Nanocrystalline Diamond Thin-Film Electrodes: The Effect of the Nitrogenation on Electrochemical Properties
,”
Electrochim. Acta
,
52
(
17
), pp.
5470
5478
.
72.
Hu
,
Q.
,
Han
,
Z.
,
Wang
,
X.
,
Li
,
G.
,
Wang
,
Z.
,
Huang
,
X.
,
Yang
,
H.
, et al
,
2020
, “
Facile Synthesis of Sub-Nanometric Copper Clusters by Double Confinement Enables Selective Reduction of Carbon Dioxide to Methane
,”
Angew. Chem. Int. Ed.
,
59
(
43
), pp.
19054
19059
.
73.
Malapit
,
C. A.
,
Prater
,
M. B.
,
Cabrera-Pardo
,
J. R.
,
Li
,
M.
,
Pham
,
T. D.
,
McFadden
,
T. P.
,
Blank
,
S.
, and
Minteer
,
S. D.
,
2022
, “
Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis
,”
Chem. Rev.
,
122
(
3
), pp.
3180
3218
.
74.
Toghill
,
K. E.
, and
Compton
,
R. G.
,
2010
, “
Metal Nanoparticle Modified Boron Doped Diamond Electrodes for Use in Electroanalysis
,”
Electroanalysis
,
22
(
17–18
), pp.
1947
1956
.
75.
Jones
,
S. E. W.
, and
Compton
,
R. G.
,
2008
, “
Fabrication and Applications of Nanoparticle-Modified Electrodes in Stripping Analysis
,”
Curr. Anal. Chem.
,
4
(
3
), pp.
177
182
.
76.
Campbell
,
F. W.
, and
Compton
,
R. G.
,
2010
, “
The Use of Nanoparticles in Electroanalysis: An Updated Review
,”
Anal. Bioanal. Chem.
,
396
(
1
), pp.
241
259
.
77.
Riedel
,
M.
,
Mantel
,
B.
,
Ristein
,
J.
, and
Ley
,
L.
,
2000
, “
Origin of Surface Conductivity in Diamond
,”
Phys. Rev. Lett.
,
85
(
16
), pp.
3472
3475
.
78.
Zhu
,
Q.
,
Sun
,
X.
,
Yang
,
D.
,
Ma
,
J.
,
Kang
,
X.
,
Zheng
,
L.
,
Zhang
,
J.
,
Wu
,
Z.
, and
Han
,
B.
,
2019
, “
Carbon Dioxide Electroreduction to c-2 Products Over Copper-Cuprous Oxide Derived From Electrosynthesized Copper Complex
,”
Nat. Commun.
,
10
(
1
), p.
3851
.
79.
Nakabayashi
,
Y.
,
Hirano
,
Y.
,
Sakurai
,
Y.
,
Okazaki
,
A.
,
Kuriyama
,
H.
,
Roy
,
N.
,
Suzuki
,
N.
, et al
,
2018
, “
Positive Shift in the Potential of Photo-Electrochemical CO2 Reduction to CO on Ag-Loaded Boron-Doped Diamond Electrode by an Electrochemical Pre-Treatment
,”
J. Appl. Electrochem.
,
48
(
1
), pp.
61
73
.
80.
Romero Cuellar
,
N. S.
,
Wiesner-Fleischer
,
K.
,
Hinrichsen
,
O.
, and
Fleischer
,
M.
,
2018
, “
Electrochemical Reduction of CO2 in Water-Based Electrolytes KHCO3 and K2SO4 Using Boron Doped Diamond Electrodes
,”
ChemistrySelect
,
3
(
13
), pp.
3591
3595
.
81.
Jiwanti
,
P. K.
,
Ichzan
,
A. M.
,
Dewandaru
,
R. K. P.
,
Atriardi
,
S. R.
,
Einaga
,
Y.
, and
Ivandini
,
T. A.
,
2020
, “
Improving the CO2 Electrochemical Reduction to Formic Acid Using Iridium-Oxide-Modified Boron-Doped Diamond Electrodes
,”
Diamond Relat. Mater.
,
106
, p.
107874
.
82.
Verlato
,
E.
,
Barison
,
S.
,
Einaga
,
Y.
,
Fasolin
,
S.
,
Musiani
,
M.
,
Nasi
,
L.
,
Natsui
,
K.
,
Paolucci
,
F.
, and
Valenti
,
G.
,
2019
, “
CO2 Reduction to Formic Acid at Low Overpotential on bdd Electrodes Modified With Nanostructured CeO2
,”
J. Mater. Chem. A
,
7
(
30
), pp.
17896
17905
.
83.
Ivandini
,
T. A.
,
2018
, “
Electrochemical Conversion of CO2 at Metal-Modified Boron-Doped Diamond Electrodes
,”
AIP Conf. Proc.
,
2023
(
1
), p.
020102
.
84.
Denala
,
D.
,
Khalil
,
M.
, and
Ivandini
,
T. A.
,
2019
, “
Preparation of Boron Doped Diamond Modified With Cuprous Oxide as Working Electrode for Electroreduction of CO2
,”
AIP Conf. Proc.
,
2168
(
1
), p.
020057
.
85.
Jiwanti
,
P. K.
, and
Einaga
,
Y.
,
2020
, “
Further Study of CO2 Electrochemical Reduction on Palladium Modified bdd Electrode: Influence of Electrolyte
,”
Chem. Asian J.
,
15
(
6
), pp.
910
914
.
86.
Jiwanti
,
P.
, and
Einaga
,
Y.
,
2019
, “
Electrochemical Reduction of CO2 Using Palladium Modified Boron Doped Diamond Electrodes: Enhancing the Production of CO
,”
Phys. Chem. Chem. Phys.
,
21
(
28
), pp.
15297
15301
.
87.
Atriardi
,
S. R.
,
Dewandaru
,
R. K. P.
,
Gunlazuardi
,
J.
, and
Ivandini
,
T. A.
,
2019
, “
Modification of Boron-Doped Diamond Electrodes With Platinum-Iridium for Carbon Dioxide Electroreduction
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
496
, p.
012040
.
88.
Gunlazuardi
,
J.
, and
Ivandini
,
T. A.
,
2017
, “
Preparation of Platinum-Modified Boron-Doped Diamond for Electroreduction of CO2
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
188
(
1
), p.
012037
.
89.
Dyachenko
,
A. G.
,
Tsapyuk
,
G. G.
,
Gaidai
,
S. V.
,
Ischenko
,
O. V.
,
Zakharova
,
T. M.
,
Il'nitskaya
,
G. D.
, and
Loginova
,
O. B.
,
2020
, “
Synthetic Nanodiamonds (SNDs) Containing Bimetallic Ni(Co)-Fe Composites: Preparation, Characterization and Catalytic Performance in the Reaction of Co(2)Methanation
,”
Mol. Cryst. Liq. Cryst.
,
701
(
1
), pp.
91
97
.
90.
Jiwanti
,
P. K.
,
Sultana
,
S.
,
Wicaksono
,
W. P.
, and
Einaga
,
Y.
,
2021
, “
Metal Modified Carbon-Based Electrode for CO2 Electrochemical Reduction: A Review
,”
J. Electroanal. Chem.
,
898
, p.
115634
.
91.
Jiwanti
,
P. K.
, and
Einaga
,
Y.
,
2019
, “
Electrochemical Reduction of CO2 Using Palladium Modified Boron-Doped Diamond Electrodes: Enhancing the Production of CO
,”
Phys. Chem. Chem. Phys.
,
21
(
28
), pp.
15297
15301
.
92.
Yetri
,
N. Y.
,
Ivandini
,
T. A.
, and
Gunlazuardi
,
J.
,
2017
, “
Preparation of Copper Oxide Modified Boron-Doped Diamond Electrodes and Its Preliminary Study for CO2 Reduction
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
188
(
1
), p.
012011
.
93.
Roy
,
N.
,
Shibano
,
Y.
,
Terashima
,
C.
,
Katsumata
,
K.-I.
,
Nakata
,
K.
,
Kondo
,
T.
,
Yuasa
,
M.
, and
Fujishima
,
A.
,
2016
, “
Ionic-Liquid-Assisted Selective and Controlled Electrochemical CO2 Reduction at Cu-Modified Boron-Doped Diamond Electrode
,”
ChemElectroChem
,
3
(
7
), pp.
1044
1047
.
94.
Jakšić
,
M. M.
,
1984
, “
Electrocatalysis of Hydrogen Evolution in the Light of the Brewer—Engel Theory for Bonding in Metals and Intermetallic Phases
,”
Electrochim. Acta
,
29
(
11
), pp.
1539
1550
.
95.
Fu
,
X.
,
Zhu
,
A.
,
Chen
,
X.
,
Zhang
,
S.
,
Wang
,
M.
, and
Yuan
,
M.
,
2021
, “
Stabilization of Cu/Ni Alloy Nanoparticles With Graphdiyne Enabling Efficient CO2 Reduction
,”
Chem. Res. Chin. Univ.
,
37
(
6
), pp.
1328
1333
.
96.
Kondo
,
T.
,
Aoshima
,
S.
,
Honda
,
K.
,
Einaga
,
Y.
, and
Fujishima
,
K. T.
,
2007
, “
Fabrication of Covalent Sam/Au Nanoparticle/Boron-Doped Diamond Configurations With a Sequential Self-Assembly Method
,”
J. Phys. Chem. C
,
111
(
34
), pp.
12650
12657
.
97.
Shah
,
U. V.
,
Olusanmi
,
D.
,
Narang
,
A. S.
,
Hussain
,
M. A.
,
Gamble
,
J. F.
,
Tobyn
,
M. J.
, and
Heng
,
J. Y. Y.
,
2014
, “
Effect of Crystal Habits on the Surface Energy and Cohesion of Crystalline Powders
,”
Int. J. Pharm.
,
472
(
1–2
), pp.
140
147
.
98.
Li
,
J.
,
Umar Abbas
,
S.
,
Wang
,
H.
,
Zhang
,
Z.
, and
Hu
,
W.
,
2021
, “
Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction
,”
Nano-Micro Lett.
,
13
(
1
), p.
216
.
99.
Wanninayake
,
N.
,
Ai
,
Q.
,
Zhou
,
R.
,
Hoque
,
M. A.
,
Herrell
,
S.
,
Guzman
,
M. I.
,
Risko
,
C.
, and
Kim
,
D. Y.
,
2020
, “
Understanding the Effect of Host Structure of Nitrogen Doped Ultrananocrystalline Diamond Electrode on Electrochemical Carbon Dioxide Reduction
,”
Carbon
,
157
, pp.
408
419
.
100.
Ramírez-Valencia
,
L. D.
,
Bailón-García
,
E.
,
Carrasco-Marín
,
F.
, and
Pérez-Cadenas
,
A. F.
,
2021
, “
From CO2 to Value-Added Products: A Review About Carbon-Based Materials for Electro-Chemical CO2 Conversion
,”
Catalysts
,
11
(
3
), p.
351
.
101.
Liu
,
Y.
,
Quan
,
X.
,
Yu
,
H.
,
Zhao
,
H.
,
Zhang
,
Y.
, and
Chen
,
G.
,
2013
, “
Boron and Nitrogen Codoped Nanodiamond as an Efficient Metal-Free Catalyst for Oxygen Reduction Reaction
,”
J. Phys. Chem. C
,
117
(
29
), pp.
14992
14998
.
102.
Ma
,
X.
,
Du
,
J.
,
Sun
,
H.
,
Ye
,
F.
,
Wang
,
X.
,
Xu
,
P.
,
Hu
,
C.
,
Zhang
,
L.
, and
Liu
,
D.
,
2021
, “
Boron, Nitrogen Co-Doped Carbon With Abundant Mesopores for Efficient CO2 Electroreduction
,”
Appl. Catal. B
,
298
, p.
120543
.
103.
Masood ul Hasan
,
I.
,
Peng
,
L.
,
Mao
,
J.
,
He
,
R.
,
Wang
,
Y.
,
Fu
,
J.
,
Xu
,
N.
, and
Qiao
,
J.
,
2021
, “
Carbon-Based Metal-Free Catalysts for Electrochemical CO2 Reduction: Activity, Selectivity, and Stability
,”
Carbon Energy
,
3
(
1
), pp.
24
49
.
104.
Guo
,
T.
,
Yang
,
N.
,
Yang
,
B.
,
Schulte
,
A.
,
Jin
,
Q.
,
Koch
,
U.
,
Mandal
,
S.
, et al
,
2021
, “
Electrochemistry of Nitrogen and Boron Bi-Element Incorporated Diamond Films
,”
Carbon
,
178
(
3
), pp.
19
25
.
105.
Knittel
,
P.
,
Buchner
,
F.
,
Hadzifejzovic
,
E.
,
Giese
,
C.
,
Quellmalz
,
P.
,
Seidel
,
R.
,
Petit
,
T.
, et al
,
2020
, “
Nanostructured Boron Doped Diamond Electrodes With Increased Reactivity for Solar-Driven CO2 Reduction in Room Temperature Ionic Liquids
,”
ChemCatChem
,
12
(
21
), pp.
5548
5557
.
106.
Butt
,
R.
,
Siddique
,
A. H.
,
Bokhari
,
S. W.
,
Jiang
,
S. Q.
,
Lei
,
D.
,
Zhou
,
X. F.
, and
Liu
,
Z. P.
,
2019
, “
Niobium Carbide/Reduced Graphene Oxide Hybrid Porous Aerogel as High Capacity and Long-Life Anode Material for Li-Ion Batteries
,”
Int. J. Energy Res.
,
43
(
9
), pp.
4995
5003
.
107.
Kamysbayev
,
V.
,
Filatov
,
A. S.
,
Hu
,
H.
,
Rui
,
X.
,
Lagunas
,
F.
,
Wang
,
D.
,
Klie
,
R. F.
, and
Talapin
,
D. V.
,
2020
, “
Covalent Surface Modifications and Superconductivity of Two-Dimensional Metal Carbide Mxenes
,”
Science
,
369
(
6506
), pp.
979
983
.
108.
Jiwanti
,
P. K.
,
Alfaza
,
A. M.
,
Kadja
,
G. T. M.
,
Khalil
,
M.
, and
Einaga
,
Y.
,
2022
, “
Electrochemical Study of CO2 Reduction on Ti3C2Tx Modified Boron-Doped Diamond Electrode
,”
Inorg. Chem. Commun.
,
137
(
5
), p.
109229
.
109.
Kiat
,
S.
, and
Samuel
,
J.
,
2021
, “
Mitigating Iron-Induced Catalytic Wear in Monocrystalline Diamond Tools Using Two-Dimensional (2d) Materials
,”
J. Manuf. Process.
,
68
(
10
), pp.
95
103
.
110.
Mirabedini
,
P. S.
,
Debnath
,
B.
,
Neupane
,
M. R.
,
Greaney
,
P. A.
,
Birdwell
,
A. G.
,
Ruzmetov
,
D.
,
Crawford
,
K. G.
,
Shah
,
P.
,
Weil
,
J.
, and
Ivanov
,
T. G.
,
2020
, “
Structural and Electronic Properties of 2d (Graphene, hbn)/h-Terminated Diamond (100) Heterostructures
,”
Appl. Phys. Lett.
,
117
(
12
), p.
121901
.
111.
Yang
,
D.
,
Zhu
,
Q.
, and
Han
,
B.
,
2020
, “
Electroreduction of CO2 in Ionic Liquid-Based Electrolytes
,”
Innovation
,
1
(
1
), p.
100016
.
112.
Wang
,
Y.
,
Cao
,
L.
,
Libretto
,
N. J.
,
Li
,
X.
,
Li
,
C.
,
Wan
,
Y.
,
He
,
C.
, et al
,
2019
, “
Ensemble Effect in Bimetallic Electrocatalysts for CO2 Reduction
,”
J. Am. Chem. Soc.
,
141
(
42
), pp.
16635
16642
.
113.
Yang
,
N.
,
Swain
,
G. M.
, and
Jiang
,
X.
,
2016
, “
Nanocarbon Electrochemistry and Electroanalysis: Current Status and Future Perspectives
,”
Electroanalysis
,
28
(
1
), pp.
27
34
.
114.
Fernandes
,
D.
,
Peixoto
,
A.
, and
Freire
,
C.
,
2019
, “
Nitrogen Doped Metal Free Carbon Catalysts for (Electro)Chemical CO2 Conversion and Valorisation
,”
Dalton Trans.
,
48
(
36
), pp.
13508
13528
.
115.
Zeng
,
A.
,
Neto
,
V. F.
,
Gracio
,
J. J.
, and
Fan
,
Q. H.
,
2014
, “
Diamond-Like Carbon (DLC) Films as Electrochemical Electrodes
,”
Diamond Relat. Mater.
,
43
, pp.
12
22
.
116.
Hevia
,
S. A.
,
Bejide
,
M.
,
Duran
,
B.
,
Rosenkranz
,
A.
,
Ruiz
,
H. M.
,
Favre
,
M.
, and
del Rio
,
R.
,
2018
, “
Nanometric Thin Films of Non-Doped Diamond-Like Carbon Grown on n-Type (p-Doped) Silicon Substrates as Electrochemical Electrodes
,”
J. Solid State Electrochem.
,
22
(
9
), pp.
2845
2853
.
117.
Baran
,
E.
,
Baz
,
Z.
,
Esen
,
R.
, and
Devrim
,
B. Y.
,
2017
, “
TiO2-NT Electrodes Modified With Ag and Diamond Like Carbon (DLC) for Hydrogen Production by Alkaline Water Electrolysis
,”
Appl. Surf. Sci.
,
420
, pp.
416
428
.
118.
Hernández
,
R. M.
,
Márquez
,
J.
,
Márquez
,
O. P.
,
Choy
,
M.
,
Ovalles
,
C.
,
Garcia
,
J. J.
, and
Scharifker
,
B.
,
1999
, “
Reduction of Carbon Dioxide on Modified Glassy Carbon Electrodes
,”
J. Electrochem. Soc.
,
146
(
11
), pp.
4131
4136
.
119.
Wang
,
Y.
,
Qu
,
J.
,
Li
,
S.
,
Dong
,
Y.
, and
Qu
,
J.
,
2015
, “
Simultaneous Determination of Hydroquinone and Catechol Using a Glassy Carbon Electrode Modified With Gold Nanoparticles, zns/nis@zns Quantum Dots and l-Cysteine
,”
Microchim. Acta
,
182
(
13
), pp.
2277
2283
.
120.
Chen
,
Z.
,
Mou
,
K.
,
Yao
,
S.
, and
Liu
,
L.
,
2018
, “
Highly Selective Electrochemical Reduction of CO2 to Formate on Metal-Free Nitrogen-Doped PC61BM
,”
J. Mater. Chem. A
,
6
(
24
), pp.
11236
11243
.
121.
Gao
,
Z.
,
Li
,
J.
,
Zhang
,
Z.
, and
Hu
,
W.
,
2022
, “
Recent Advances in Carbon-Based Materials for Electrochemical CO2 Reduction Reaction
,”
Chin. Chem. Lett.
,
33
(
5
), pp.
2270
2280
.
122.
Sato
,
S.
,
Arai
,
T.
, and
Morikawa
,
T.
,
2018
, “
Electrocatalytic CO2 Reduction Near the Theoretical Potential in Water Using Ru Complex Supported on Carbon Nanotubes
,”
Nanotechnology
,
29
(
3
), p.
034001
.
123.
Zhang
,
C.
,
Chen
,
H. M.
,
Ding
,
X. H.
,
Lorestani
,
F.
,
Huang
,
C. L.
,
Zhang
,
B. W.
,
Zheng
,
B.
,
Wang
,
J.
,
Cheng
,
H. Y.
, and
Xu
,
Y.
,
2022
, “
Human Motion-Driven Self-Powered Stretchable Sensing Platform Based on Laser-Induced Graphene Foams
,”
Appl. Phys. Rev.
,
9
(
1
), p.
011413
.
124.
Wu
,
J.
,
Liu
,
M.
,
Sharma
,
P. P.
,
Yadav
,
R. M.
,
Ma
,
L.
,
Yang
,
Y.
,
Zou
,
X.
, et al
,
2016
, “
Incorporation of Nitrogen Defects for Efficient Reduction of CO2 Via Two-Electron Pathway on Three-Dimensional Graphene Foam
,”
Nano Lett.
,
16
(
1
), pp.
466
470
.
125.
Saeidi
,
N.
,
Esrafili
,
M. D.
, and
Jahanbin Sardroodi
,
J.
,
2022
, “
Electrochemical Reduction of No Catalyzed by Boron-Doped c60 Fullerene: A First-Principles Study
,”
RSC Adv.
,
12
(
5
), pp.
3003
3012
.
126.
Kao
,
W. H.
,
Wu
,
S. Y.
, and
Chen
,
H. T.
,
2019
, “
Exploring Reaction Mechanisms for Co Oxidation on Boron-Doped Carbon Nanotubes: A Computational Approach
,”
Appl. Surf. Sci.
,
480
, pp.
63
69
.
127.
Sreekanth
,
N.
,
Nazrulla
,
M. A.
,
Vineesh
,
T. V.
,
Sailaja
,
K.
, and
Phani
,
K. L.
,
2015
, “
Metal-Free Boron-Doped Graphene for Selective Electroreduction of Carbon Dioxide to Formic Acid/Formate
,”
Chem. Commun.
,
51
(
89
), pp.
16061
16064
.
128.
Jia
,
C.
,
Ren
,
W.
,
Chen
,
X.
,
Yang
,
W.
, and
Zhao
,
C.
,
2020
, “
(N, B) Dual Heteroatom-Doped Hierarchical Porous Carbon Framework for Efficient Electroreduction of Carbon Dioxide
,”
ACS Sustain. Chem. Eng.
,
8
(
15
), pp.
6003
6010
.
129.
Zhu
,
J. L.
,
Wei
,
P. C.
,
Key
,
J.
,
Yin
,
S. B.
,
Ma
,
S. J.
, and
Shen
,
P. K.
,
2019
, “
Self-Assembled and Well Separated B and N Co-Doped Hierarchical Carbon Structures as High-Capacity, Ultra-Stable, LIB Anode Materials
,”
Sustain. Energy Fuels
,
3
(
2
), pp.
478
487
.
130.
Li
,
R.
,
2005
, “
A Molecular Dynamics Study of Boron and Nitrogen in Diamond
,”
Solid State Commun.
,
135
(
3
), pp.
155
157
.
131.
Lee
,
S.
, and
Lee
,
J.
,
2016
, “
Electrode Build-Up of Reducible Metal Composites Toward Achievable Electrochemical Conversion of Carbon Dioxide
,”
ChemSusChem
,
9
(
4
), pp.
333
344
.
132.
Zhao
,
X.
,
Luo
,
B.
,
Long
,
R.
,
Wang
,
C.
, and
Xiong
,
Y.
,
2015
, “
Composition-Dependent Activity of Cu-Pt Alloy Nanocubes for Electrocatalytic CO2 Reduction
,”
J. Mater. Chem. A
,
3
(
8
), pp.
4134
4138
.
133.
Mavrokefalos
,
C. K.
,
Nelson
,
G. W.
,
Poll
,
C. G.
,
Compton
,
R. G.
, and
Foord
,
J. S.
,
2015
, “
Electrochemical Aspects of Pt-Cu and Cu Modified Boron-Doped Diamond
,”
Phys. Status Solidi A
,
212
(
11
), pp.
2559
2567
.
134.
Rasul
,
S.
,
Anjum
,
D. H.
,
Jedidi
,
A.
,
Minenkov
,
Y.
,
Cavallo
,
L.
, and
Takanabe
,
K.
,
2015
, “
A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to CO
,”
Angew. Chem. Int. Ed.
,
54
(
7
), pp.
2146
2150
.
135.
Jia
,
F.
,
Yu
,
X.
, and
Zhang
,
L.
,
2014
, “
Enhanced Selectivity for the Electrochemical Reduction of CO2 to Alcohols in Aqueous Solution With Nanostructured Cu-Au Alloy as Catalyst
,”
J. Power Sources
,
252
, pp.
85
89
.
136.
Baek
,
Y.
,
Song
,
H.
,
Hong
,
D.
,
Wang
,
S.
,
Lee
,
S.
,
Joo
,
Y.-C.
,
Lee
,
G.-D.
, and
Oh
,
J.
, “
Electrochemical Carbon Dioxide Reduction on Copper-Zinc Alloys: Ethanol and Ethylene Selectivity Analysis
,”
J. Mater. Chem. A
,
10
(
17
), pp.
9393
9401
.
137.
Mavrokefalos
,
C. K.
,
Hasan
,
M.
,
Khunsin
,
W.
,
Schmidt
,
M.
,
Maier
,
S. A.
,
Rohan
,
J. F.
,
Compton
,
R. G.
, and
Foord
,
J. S.
,
2017
, “
Electrochemically Modified Boron-Doped Diamond Electrode With Pd and Pd-Sn Nanoparticles for Ethanol Electrooxidation
,”
Electrochim. Acta
,
243
, pp.
310
319
.
138.
Kumik
,
A.
,
Ivandini
,
T. A.
, and
Wibowo
,
R.
,
2020
, “
Modification of Boron-Doped Diamond With Gold-Palladium Nanoparticles for CO2 Electroreduction
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
763
(
1
), p.
012001
.
139.
Jian
,
Z.
,
Xu
,
J.
,
Yang
,
N.
,
Han
,
S.
, and
Jiang
,
X.
,
2021
, “
A Perspective on Diamond Composites and Their Electrochemical Applications
,”
Curr. Opin. Electrochem.
,
30
, p.
100835
.
140.
Birdja
,
Y.
,
Pérez-Gallent
,
E.
,
Figueiredo
,
M.
,
Göttle
,
A.
,
Calle-Vallejo
,
F.
, and
Koper
,
M.
,
2019
, “
Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels
,”
Nat. Energy
,
4
(
9
), pp.
732
745
.
141.
Agarwal
,
A.
,
Zhai
,
Y.
,
Hill
,
D.
, and
Sridhar
,
N.
,
2011
, “
The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility
,”
ChemSusChem
,
4
(
9
), pp.
1301
1310
.
142.
Gong
,
Q.
,
Ding
,
P.
,
Xu
,
M.
,
Zhu
,
X.
,
Wang
,
M.
,
Deng
,
J.
,
Ma
,
Q.
, et al
,
2019
, “
Structural Defects on Converted Bismuth Oxide Nanotubes Enable Highly Active Electrocatalysis of Carbon Dioxide Reduction
,”
Nat. Commun.
,
10
(
1
), p.
2807
.
143.
Li
,
D.
,
Zhang
,
H.
,
Xiang
,
H.
,
Rasul
,
S.
,
Fontmorin
,
J. M.
,
Izadi
,
P.
,
Roldan
,
A.
, et al
,
2021
, “
How to Go Beyond C-1 Products With Electrochemical Reduction of CO2
,”
Sustain. Energy Fuels
,
5
(
23
), pp.
5893
5914
.
144.
Dongare
,
S.
,
Singh
,
N.
,
Bhunia
,
H.
,
Bajpai
,
P. K.
, and
Das
,
A. K.
,
2021
, “
Electrochemical Reduction of Carbon Dioxide to Ethanol: A Review
,”
ChemistrySelect
,
6
(
42
), pp.
11603
11629
.
145.
Liu
,
Y.
,
Zhang
,
Y.
,
Cheng
,
K.
,
Quan
,
X.
,
Fan
,
X.
,
Su
,
Y.
,
Chen
,
S.
, et al
,
2017
, “
Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-Doped Nanodiamond
,”
Angew. Chem. Int. Ed.
,
56
(
49
), pp.
15607
15611
.
146.
Liu
,
Y.
,
Yang
,
H.
,
Fan
,
X.
,
Shan
,
B.
, and
Meyer
,
T. J.
,
2022
, “
Promoting Electrochemical Reduction of CO2 to Ethanol by b/n-Doped sp3/sp2 Nanocarbon Electrode
,”
Chin. Chem. Lett.
,
33
(
10
), pp.
4691
4694
.
147.
Pander
,
J. E.
III
,
Ren
,
D.
,
Huang
,
Y.
,
Loo
,
N. W. X.
,
Hong
,
S. H. L.
, and
Yeo
,
B. S.
,
2018
, “
Understanding the Heterogeneous Electrocatalytic Reduction of Carbon Dioxide on Oxide-Derived Catalysts
,”
ChemElectroChem
,
5
(
2
), pp.
219
237
.
148.
Jiwanti
,
P. K.
,
Natsui
,
K.
,
Nakata
,
K.
, and
Einaga
,
Y.
,
2018
, “
The Electrochemical Production of C2/C3 Species From Carbon Dioxide on Copper-Modified Boron-Doped Diamond Electrodes
,”
Electrochim. Acta
,
266
, pp.
414
419
.
149.
Denala
,
D.
,
Khalil
,
M.
, and
Ivandini
,
T. A.
,
2019
, “
Preparation of Boron Doped Diamond Modified With Cuprous Oxide as Working Electrode for Electroreduction of CO2
,”
AIP Conf. Proc.
,
2168
(
1
), p.
020057
.
150.
Zahid
,
A.
,
Shah
,
A.
, and
Shah
,
I.
,
2022
, “
Oxide Derived Copper for Electrochemical Reduction of CO2 to C2 + Products
,”
Nanomaterials
,
12
(
8
), p.
1380
.
151.
Nihongi
,
S.
,
Otake
,
A.
,
Du
,
J.
, and
Einaga
,
Y.
,
2022
, “
Convection Control in a Flow Cell on Electrochemical CO2 Reduction Using a Boron-Doped Diamond Electrode
,”
Carbon
,
200
, pp.
456
461
.
152.
Dinh
,
C. T.
,
Burdyny
,
T.
,
Kibria
,
M. G.
,
Seifitokaldani
,
A.
,
Gabardo
,
C. M.
,
García de Arquer
,
F. P.
,
Kiani
,
A.
, et al
,
2018
, “
CO2 Electroreduction to Ethylene Via Hydroxide-Mediated Copper Catalysis at an Abrupt Interface
,”
Science
,
360
(
6390
), pp.
783
787
.
153.
Li
,
Y. C.
,
Wang
,
Z.
,
Yuan
,
T.
,
Nam
,
D. H.
,
Luo
,
M.
,
Wicks
,
J.
,
Chen
,
B.
, et al
,
2019
, “
Binding Site Diversity Promotes CO2 Electroreduction to Ethanol
,”
J. Am. Chem. Soc.
,
141
(
21
), pp.
8584
8591
.
154.
Huang
,
Y.
,
Handoko
,
A. D.
,
Hirunsit
,
P.
, and
Yeo
,
B. S.
,
2017
, “
Electrochemical Reduction of CO2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene
,”
ACS Catal.
,
7
(
3
), pp.
1749
1756
.
155.
Gabardo
,
C. M.
,
O’Brien
,
C. P.
,
Edwards
,
J. P.
,
McCallum
,
C.
,
Xu
,
Y.
,
Dinh
,
C.-T.
,
Li
,
J.
,
Sargent
,
E. H.
, and
Sinton
,
D.
,
2019
, “
Continuous Carbon Dioxide Electroreduction to Concentrated Multi-Carbon Products Using a Membrane Electrode Assembly
,”
Joule
,
3
(
11
), pp.
2777
2791
.
156.
Tomisaki
,
M.
,
Natsui
,
K.
,
Ikemiya
,
N.
,
Nakata
,
K.
, and
Einaga
,
Y.
,
2018
, “
Influence of Electrolyte on the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes
,”
ChemistrySelect
,
3
(
36
), pp.
10209
10213
.
157.
Yang
,
W.
,
Chen
,
S.
,
Ren
,
W.
,
Zhao
,
Y.
,
Chen
,
X.
,
Jia
,
C.
,
Liu
,
J.
, and
Zhao
,
C.
,
2019
, “
Nanostructured Amalgams With Tuneable Silver-Mercury Bonding Sites for Selective Electroreduction of Carbon Dioxide Into Formate and Carbon Monoxide
,”
J. Mater. Chem. A
,
7
(
26
), pp.
15907
15912
.
158.
le Sache
,
E.
,
Pastor-Perez
,
L.
,
Haycock
,
B. J.
,
Jose Villora-Pico
,
J.
,
Sepulveda-Escribano
,
A.
, and
Reina
,
T. R.
,
2020
, “
Switchable Catalysts for Chemical CO2 Recycling: A Step Forward in the Methanation and Reverse Water-Gas Shift Reactions
,”
ACS Sustain. Chem. Eng.
,
8
(
11
), pp.
4614
4622
.
You do not currently have access to this content.