Abstract

The two main technical limitations of direct methanol fuel cells (DMFCs) are the slow kinetic reactions of the methanol oxidation reaction (MOR) in the anode and the crossing over of unreacted methanol through the proton exchange membrane (PEM). It is a common practice to use Nafion membranes as PEMs, which have high ion exchange capacity. However, Nafion-based membranes also have high fuel permeability, decreasing fuel utilization, and reducing the potential power density. This article focuses on using graphene-coated (Gr-coated) PEMs to reduce fuel crossover. Protons can permeate across graphene, and thus, it can be employed in various devices as a proton conductive membrane. Here, we report the efficiency of Gr-coated Nafions. We tested performance and crossover at three different temperatures with four different fuel concentrations and compared it to a Nafion PEM that underwent the same test conditions. We found that the adhesion of Gr on to PEMs is insufficient for prolonging fuel cell operation, resulting in Gr delamination at high temperatures and higher fuel crossover values compared to lower temperature testing. The results for 7.5M methanol fuel show a reduction of up to 25% in methanol crossover, translating to a peak power density that increases from 3.9 to 9.5 mW/cm2 when using a Gr-coated PEM compared to a Nafion PEM at 30 °C.

References

1.
Alias
,
M. S.
,
Kamarudin
,
S. K.
,
Zainoodin
,
A. M.
, and
Masdar
,
M. S.
,
2020
, “
Active Direct Methanol Fuel Cell: An Overview
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19620
19641
.
2.
Edwards
,
P. P.
,
Kuznetsov
,
V. L.
,
David
,
W. I. F.
, and
Brandon
,
N. P.
,
2008
, “
Hydrogen and Fuel Cells: Towards a Sustainable Energy Future
,”
Energy Policy
,
36
(
12
), pp.
4356
4362
.
3.
Sunitha
,
M.
,
Durgadevi
,
N.
,
Sathish
,
A.
, and
Ramachandran
,
T.
,
2018
, “
Performance Evaluation of Nickel as Anode Catalyst for DMFC in Acidic and Alkaline Medium
,”
J. Fuel Chem. Technol.
,
46
(
5
), pp.
592
599
.
4.
Feng
,
Y.
,
Liu
,
H.
, and
Yang
,
J.
,
2017
, “
A Selective Electrocatalyst-Based Direct Methanol Fuel Cell Operated at High Concentrations of Methanol
,”
Sci. Adv.
,
3
(
6
), p.
e1700580
.
5.
Liu
,
F.
,
Lu
,
G.
, and
Wang
,
C.-Y.
,
2006
, “
Low Crossover of Methanol and Water Through Thin Membranes in Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
153
(
3
), p.
A543
.
6.
Liu
,
J. G.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Wong
,
C. W.
,
2005
, “
The Effect of Methanol Concentration on the Performance of a Passive DMFC
,”
Electrochem. Commun.
,
7
(
3
), pp.
288
294
.
7.
Zhou
,
J.
,
Cao
,
J.
,
Zhang
,
Y.
,
Liu
,
J.
,
Chen
,
J.
,
Li
,
M.
,
Wang
,
W.
, and
Liu
,
X.
,
2021
, “
Overcoming Undesired Fuel Crossover: Goals of Methanol-Resistant Modification of Polymer Electrolyte Membranes
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110660
.
8.
Zeng
,
Z.
,
Song
,
R.
,
Zhang
,
S.
,
Han
,
X.
,
Zhu
,
Z.
,
Chen
,
X.
,
Wang
,
L.
, et al
,
2021
, “
Biomimetic N-Doped Graphene Membrane for Proton Exchange Membranes
,”
Nano Lett.
,
21
(
10
), pp.
4314
4319
.
9.
Bukola
,
S.
,
Cao
,
D.
,
Martinson
,
A. B. F.
, and
Creager
,
S.
,
2020
, “
Effects of Atomic-Layer-Deposition Alumina on Proton Transmission Through Single-Layer Graphene in Electrochemical Hydrogen Pump Cells
,”
ACS Appl. Energy Mater.
,
3
(
2
), pp.
1364
1372
.
10.
Mogg
,
L.
,
Zhang
,
S.
,
Hao
,
G. P.
,
Gopinadhan
,
K.
,
Barry
,
D.
,
Liu
,
B. L.
,
Cheng
,
H. M.
,
Geim
,
A. K.
, and
Lozada-Hidalgo
,
M.
,
2019
, “
Perfect Proton Selectivity in Ion Transport Through Two-Dimensional Crystals
,”
Nat. Commun.
,
10
(
1
), p.
4243
.
11.
Lozada-Hidalgo
,
M.
,
Zhang
,
S.
,
Hu
,
S.
,
Kravets
,
V. G.
,
Rodriguez
,
F. J.
,
Berdyugin
,
A.
,
Grigorenko
,
A.
, and
Geim
,
A. K.
,
2018
, “
Giant Photoeffect in Proton Transport Through Graphene Membranes
,”
Nat. Nanotechnol.
,
13
(
4
), pp.
300
303
.
12.
Bukola
,
S.
,
Liang
,
Y.
,
Korzeniewski
,
C.
,
Harris
,
J.
, and
Creager
,
S.
,
2018
, “
Selective Proton/Deuteron Transport Through Nafion|Graphene|Nafion Sandwich Structures at High Current Density
,”
J. Am. Chem. Soc.
,
140
(
5
), pp.
1743
1752
.
13.
Griffin
,
E.
,
Mogg
,
L.
,
Hao
,
G.-P.
,
Kalon
,
G.
,
Bacaksiz
,
C.
,
Lopez-Polin
,
G.
,
Zhou
,
T.
, et al
,
2020
, “
Proton and Li-Ion Permeation Through Graphene With Eight-Atom-Ring Defects
,”
ACS Nano
,
14
(
6
), pp.
7280
7286
.
14.
An
,
Y.
,
Oliveira
,
A. F.
,
Brumme
,
T.
,
Kuc
,
A.
, and
Heine
,
T.
,
2020
, “
Stone–Wales Defects Cause High Proton Permeability and Isotope Selectivity of Single-Layer Graphene
,”
Adv. Mater.
,
32
(
37
), p.
2002442
.
15.
Chaturvedi
,
P.
,
Vlassiouk
,
I. V.
,
Cullen
,
D. A.
,
Rondinone
,
A. J.
,
Lavrik
,
N. V.
, and
Smirnov
,
S. N.
,
2019
, “
Ionic Conductance Through Graphene: Assessing Its Applicability as a Proton Selective Membrane
,”
ACS Nano
,
13
(
10
), pp.
12109
12119
.
16.
Su
,
H.
, and
Hu
,
Y. H.
,
2021
, “
Recent Advances in Graphene-Based Materials for Fuel Cell Applications
,”
Energy Sci. Eng.
,
9
(
7
), pp.
958
983
.
17.
Tseng
,
C.-Y.
,
Ye
,
Y.-S.
,
Cheng
,
M.-Y.
,
Kao
,
K.-Y.
,
Shen
,
W.-C.
,
Rick
,
J.
,
Chen
,
J.-C.
, and
Hwang
,
B.-J.
,
2011
, “
Sulfonated Polyimide Proton Exchange Membranes With Graphene Oxide Show Improved Proton Conductivity, Methanol Crossover Impedance, and Mechanical Properties
,”
Adv. Energy Mater.
,
1
(
6
), pp.
1220
1224
.
18.
Yogarathinam
,
L. T.
,
Jaafar
,
J.
,
Ismail
,
A. F.
,
Goh
,
P. S.
,
Bin Mohamed
,
M. H.
,
Radzi Hanifah
,
M. F.
,
Gangasalam
,
A.
, and
Peter
,
J.
,
2022
, “
Polyaniline Decorated Graphene Oxide on Sulfonated Poly(Ether Ether Ketone) Membrane for Direct Methanol Fuel Cells Application
,”
Polym. Adv. Technol.
,
33
(
1
), pp.
66
80
.
19.
Wang
,
L. S.
,
Lai
,
A. N.
,
Lin
,
C. X.
,
Zhang
,
Q. G.
,
Zhu
,
A. M.
, and
Liu
,
Q. L.
,
2015
, “
Orderly Sandwich-Shaped Graphene Oxide/Nafion Composite Membranes for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
,
492
, pp.
58
66
. 0.1016/j.memsci.2015.05.049
20.
Xianglin
,
L.
,
Li
,
J.
,
Wu
,
G.
,
Lister
,
S.
,
2020
, Stationary Direct Methanol Fuel Cells Using Pure Methanol,
National Department of Energy Hydrogen Program
, Washington, DC, pp. 1–27, https://www.hydrogen.energy.gov/pdfs/review20/fc317_li_2020_o.pdf.
21.
Vlassiouk
,
I.
,
Regmi
,
M.
,
Fulvio
,
P.
,
Dai
,
S.
,
Datskos
,
P.
,
Eres
,
G.
, and
Smirnov
.
S.
,
2011
, “
Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene
,”
ACS Nano
,
5
(
7
), pp.
6069
6076
.
22.
Vlassiouk
,
I.
,
Polizos
,
G.
,
Cooper
,
R.
,
Ivanov
,
I.
,
Keum
,
J. K.
,
Paulauskas
,
F.
,
Datskos
,
P.
, and
Smirnov
,
S.
,
2015
, “
Strong and Electrically Conductive Graphene-Based Composite Fibers and Laminates
,”
ACS Appl. Mater. Interfaces
,
7
(
20
), pp.
10702
10709
.
23.
Vlassiouk
,
I.
,
Fulvio
,
P.
,
Meyer
,
H.
,
Lavrik
,
N.
,
Dai
,
S.
,
Datskos
,
P.
,
Smirnov
,
S.
, et al
,
2013
, “
Large Scale Atmospheric Pressure Chemical Vapor Deposition of Graphene
,”
Carbon
,
54
, pp.
58
67
.
24.
Vlassiouk
,
I.
,
Smirnov
,
S.
,
Regmi
,
M.
,
Surwade
,
S. P.
,
Srivastava
,
N.
,
Feenstra
,
R.
,
Eres
,
G.
, et al
,
2013
, “
Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure
,”
J. Phys. Chem. C
,
117
(
37
), pp.
18919
18926
.
25.
Bukola
,
S.
,
Beard
,
K.
,
Korzeniewski
,
C.
,
Harris
,
J. M.
, and
Creager
,
S. E.
,
2019
, “
Single-Layer Graphene Sandwiched Between Proton-Exchange Membranes for Selective Proton Transmission
,”
ACS Appl. Nano Mater.
,
2
(
2
), pp.
964
974
.
26.
Moehring
,
N. K.
,
Chaturvedi
,
P.
,
Cheng
,
P.
,
Ko
,
W.
,
Li
,
A.-P.
,
Boutilier
,
M. S. H.
, et al
Kidambi
,
P. R.
,
2022
, “
Kinetic Control of Angstrom-Scale Porosity in 2D Lattices for Direct Scalable Synthesis of Atomically Thin Proton Exchange Membranes
,”
ACS Nano
,
16
(
10
), pp.
16003
16018
.
27.
Soniat
,
M.
, and
Houle
,
F. A.
,
2018
, “
Swelling and Diffusion During Methanol Sorption Into Hydrated Nafion
,”
J. Phys. Chem. B
,
122
(
34
), pp.
8255
8268
.
28.
Saarinen
,
V.
,
Kreuer
,
K. D.
,
Schuster
,
M.
,
Merkle
,
R.
, and
Maier
,
J.
,
2007
, “
On the Swelling Properties of Proton Conducting Membranes for Direct Methanol Fuel Cells
,”
Solid State Ionics
,
178
(
7
), pp.
533
537
.
29.
Chaabane
,
L.
,
Dammak
,
L.
,
Grande
,
D.
,
Larchet
,
C.
,
Huguet
,
P.
,
Nikonenko
,
S. V.
, and
Nikonenkoc
,
V. V.
,
2011
, “
Swelling and Permeability of Nafion®117 in Water–Methanol Solutions: An Experimental and Modelling Investigation
,”
J. Membr. Sci.
,
377
(
1
), pp.
54
64
.
You do not currently have access to this content.