Data centers consume a considerable amount of energy which is estimated to be about 2% of the total electrical energy consumed in the U.S. in the year 2010, and this number continues to increase every year. Thermal management is becoming increasingly important in the effort to improve the energy efficiency and reliability of data centers. The goal is to keep the information technologies (IT) equipment temperature within the allowable range in high power density data centers while reducing the energy used for cooling. In this regard, liquid and hybrid air/water cooling systems are alternatives to traditional air cooling. In particular, these options offer advantages for localized cooling higher power racks which may not be manageable using the room level air cooling system without requiring significantly more energy. In this paper, a hybrid cooling system in data centers is investigated. In addition to traditional raised floor, cold aisle-hot aisle configuration, a liquid–air heat exchanger attached to the back of racks is considered. First of all, the paper presents a review of literature of the study of this heat exchanger strategy in the thermal management of a data center. The discussion focus on rear door heat exchanger (RDHx) performance, both the steady state and transient impact are analyzed. The studies show that under some circumstances, this hybrid approach could be a viable alternative to meet the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) recommended inlet air temperatures, while at the same time reducing the overall energy consumption in high density data centers. The hybrid design approach can also significantly improve the dynamic performance during rack power increases or computer room air conditioner (CRAC) unit failure. And then, additional parametric steady state and dynamic analyses, are presented in detail for the different scenarios.

References

1.
ASHRAE
,
2005
,
Datacom Equipment Power Trends and Cooling Applications
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
2.
Scaramella
,
J.
,
2008
, “
Next-Generation Power and Cooling for Blade Environments
,” IDC, Framingham, MA, Technical Report No. 215675.
3.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
4.
Schmidt
,
R.
, and
Iyengar
,
M.
,
2007
, “
Best Practices for Data Center Thermal and Energy Management: Review of Literature
,”
ASHRAE Trans.
,
113
(
1
), pp.
206
218
.
5.
Pacific Gas and Electric Company Report
,
2006
, “High Performance Data Centers—A Design Guidelines Sourcebook,”
Pacific Gas and Electric Co.
, San Francisco, CA.
6.
Ramos
,
L.
, and
Ricardo
,
B.
,
2008
, “
C-Oracle: Predictive Thermal Management for Data Centers
,”
IEEE 14th International Symposium on High Performance Computer Architecture
(
HPCA 2008
), Salt Lake City, UT, Feb. 16–20, pp.
111
122
.10.1109/HPCA.2008.4658632
7.
Rambo
,
J.
, and
Joshi
,
Y.
,
2007
, “
Modeling of Data Center Airflow and Heat Transfer: State of the Art and Future Trends
,”
Distributed Parallel Databases
,
21
(
2–3
), pp.
193
225
.10.1007/s10619-006-7007-3
8.
Sharma
,
K. R.
,
Bash
,
C. E.
,
Patel
,
D. C.
,
Friedrich
,
J. R.
, and
Chase.
,
S. J.
,
2005
, “
Balance of Power: Dynamic Thermal Management for Internet Data Centers
,”
IEEE Internet Comput.
,
9
(
1
), pp.
42
49
.10.1109/MIC.2005.10
9.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
A.
,
McVicker
,
G.
,
Shrivastava
,
S.
,
Sri-Jayantha
,
S.
,
Amemiya
,
Y.
,
Dang
,
H.
,
Chainer
,
T.
, and
Sammakia
,
B.
,
2005
, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,”
ASME
Paper No. IPACK2005-73387.10.1115/IPACK2005-73387
10.
Shrivastava
,
S.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2005
, “
Comparative Analysis of Different Data Center Airflow Management Configurations
,”
ASME
Paper No. IPACK2005-73234.10.1115/IPACK2005-73234
11.
Scofield
,
C. M.
, and
Weaver
,
T. S.
,
2008
, “
Data Center Cooling—Using Wet-Bulb Economizers
,”
ASHRAE J.
,
50
(8), pp.
52
59
.
12.
Koomey
,
J. G.
, “
Estimating Total Power Consumption by Servers in the U.S. and the World, 2007
,” Lawrence Berkeley National Laboratory, Berkeley, CA, available at: http://hightech.lbl.gov/documents/DATA_CENTERS/svrpwrusecompletefinal.pdf
13.
Iyengar
,
M.
, and
Schmidt
,
R.
,
2007
, “
Analytical Modeling of Energy Consumption and Thermal Performance of Data Center Cooling Systems—From the Chip to the Environment
,”
ASME
Paper No. IPACK2007-33924.10.1115/IPACK2007-33924
14.
Schmidt
,
R.
,
2004
, “
Thermal Profile of a High-Density Data Center—Methodology to Thermally Characterize a Data Center
,”
ASHRAE Trans.
,
110
(
2
), pp.
635
642
.
15.
Schmidt
,
R.
,
Iyengar
,
M.
,
Beaty
,
D.
, and
Shrivastava
,
S.
,
2005
, “
Thermal Profile of a High-Density Data Center—Hot Spot Heat Fluxes of 512 W/ft2
,”
ASHRAE Trans.
,
111
(
2
), pp.
765
777
.
16.
Schmidt
,
R.
,
Iyengar
,
M.
, and
Mayhugh
,
S.
,
2006
, “
Thermal Profile of World’s Third Fastest Supercomputer—IBM’s ASCI Purple Cluster
,”
ASHRAE Trans.
,
112
(
2
), pp.
209
219
.
17.
Shrivastava
,
S.
,
Iyengar
,
M.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
VanGilder
,
J.
,
2009
, “
Experimental-Numerical Comprison for a High-Density Data Center: Hot Spot Heat Fluxes in Excess of 500 w/ft
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
166
172
.10.1109/TCAPT.2008.2011558
18.
Samadiani
,
E.
,
Joshi
,
Y.
, and
Mistree
,
F.
,
2008
, “
The Thermal Design of a Next Generation Data Center: A Conceptual Exposition
,”
ASME J. Electron. Packag.
,
130
(
4
), p.
041104
.10.1115/1.2993151
19.
Niemann
,
J.
, 2008, “
Hot Aisle vs. Cold Aisle Containment
,” American Power Conversion, West Kingston, RI, APC White Paper #35.
20.
Schmidt
,
R.
,
2005
, “
Liquid Cooling is Back
,”
Electron. Cooling
,
11
(3), pp. 34–38.
21.
Patterson
,
M. K.
, and
Fenwick
,
D.
,
2008
, “
The State of Data Center Cooling—A Review of Current Air and Liquid Cooling Solutions
,” Intel, Digital Enterprise Group, Santa Clara, CA.
22.
Chu
,
R. E.
,
Simons
,
R. E.
, and
Moran
,
K. P.
,
1991
, “
System Cooling Design Considerations for Large Mainframe Computers
,”
Cooling Techniques for Computers
,
W.
Aung
, ed.,
Hemisphere Publishing
,
New York
.
23.
ASHRAE Technical Committee 9.9
,
2011
, “Thermal Guidelines for Liquid Cooled Data Processing Environments,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.
24.
Schmidt
,
R.
,
Chu
,
M.
,
Ellsworth
,
M.
,
Iyengar
,
M.
,
Porter
,
D.
,
Kamath
,
V.
, and
Lehman
,
B.
,
2005
, “
Maintaining Datacomm Rack Inlet Temperatures With Water Cooled Heat Exchangers
,”
ASME
Paper No. IPACK2005-73468. 10.1115/IPACK2005-73468
25.
David
,
M.
, and
Schmidt
,
R.
,
2014
, “
Impact of ASHRAE Environmental Classes on Data Center
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
1092
1099
.10.1109/ITHERM.2014.6892403
26.
Bhopte
,
S.
,
Iyengar
,
M.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Agonafer
,
D.
,
2006
, “
Numerical Modeling of Data Center Clusters—Impact of Model Complexity
,”
ASME
Paper No. IMECE2006-13494.10.1115/IMECE2006-13494
27.
Bhopte
,
S.
,
Sammakia
,
B.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2006
, “
Guidelines on Managing Under Floor Blockages for Improved Data Center Performance
,”
ASME
Paper No. IMECE2006-13711.10.1115/IMECE2006-13711
28.
Song
,
Z.
,
Murray
,
B.
, and
Sammakia
,
B.
,
2014
, “
Numerical Investigation of Inter-Zonal Boundary Conditions for Data Center Thermal Analysis
,”
Int. J. Heat Mass Transfer
,
68
(1), pp.
649
658
.10.1016/j.ijheatmasstransfer.2013.09.073
29.
Gao
,
T.
,
Sammakia
,
B.
,
Geer
,
J.
,
David
,
M.
, and
Schmidt
,
R.
, “
Experimentally Verified Transient Models of Data Center Crossflow Heat Exchangers
,”
ASME
Paper No. IMECE2014-36022.10.1115/IMECE2014-36022
30.
Ibrahim
,
M.
,
Sammakia
,
B.
,
Afram
,
F.
,
Ghose
,
K.
,
Murray
,
B.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2011
, “
Analytical Compact Model of a 2U Server
,”
ASME
Paper No. IPACK2011-52165.10.1115/IPACK2011-52165
31.
Gao
,
T.
,
Geer
,
J.
, and
Sammakia
,
B.
,
2014
, “
Nonuniform Temperature Boundary Condition Effect on Data Center Cross Flow Heat Exchanger Dynamic Performance
,”
Int. J. Heat Mass Transfer
,
79
, pp.
1048
1058
.10.1016/j.ijheatmasstransfer.2014.09.011
32.
Gao
,
T.
,
Sammakia
,
B.
,
Murray
,
B.
,
Ortega
,
A.
, and
Schmidt
,
R.
,
2014
, “
Cross Flow Heat Exchanger Modeling of Transient Temperature Input Conditions
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
11
), pp.
1796
1807
.10.1109/TCPMT.2014.2356202
33.
Gao
,
T.
,
Sammakia
,
B.
,
Geer
,
J.
,
Ortega
,
A.
, and
Schmidt
,
R.
, “
Dynamic Analysis of Cross Flow Heat Exchangers in Data Centers Using Transient Effectiveness Method
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
, (in press).10.1109/TCPMT.2014.2369256
34.
Mentor Graphics, 2012, “
FloTherm 9.3 Reference Manual
,” Mentor Graphics, Wilsonville, OR.
35.
Gao
,
T.
,
Samadiani
,
E.
,
Sammakia
,
B.
, and
Schmidt
,
R.
,
2013
, “
Comparative Thermal and Energy Analysis of A Hybrid Cooling Data Center With Rear Door Heat Exchangers
,”
ASME
Paper No. IPACK2013-73101. 10.1115/IPACK2013-73101
36.
Coolcentric, 2011, “
Rear Door Heat Exchanger Planning Guide
,” Vette Corp., Pelham, NH.
37.
Schmidt
,
R.
, and
Iyengar
,
M.
,
2009
, “
Server Rack Rear Door Heat Exchanger and the New ASHRAE Recommended Environmental Guidelines
,”
ASME
Paper No. IPACK2009-89212.10.1115/InterPACK2009-89212
38.
ASHRAE
,
2009
, “
Thermal Guidelines for Data Processing Equipment—Second Edition
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.
39.
Mulay
,
V.
,
Karajgikar
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2007
, “
Computational Study of Hybrid Cooling Solution for Thermal Management of Data Centers
,”
ASME
Paper No. IPACK2007-33000. 10.1115/IPACK2007-33000
40.
Mulay
,
V.
,
Karajgikar
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2007
, “
Parametric Study of Hybrid Cooling Solution for Thermal Management of Data Centers
,”
ASME
Paper No. IMECE2007-43761.10.1115/IMECE2007-43761
41.
Judge
,
J.
,
Pouchet
,
J.
,
Ekbote
,
A.
, and
Dixit
,
S.
,
2008
, “
Reducing Data Center Energy Consumption
,”
ASHRAE J.
,
Nov
., pp.
14
26
.
42.
Gao
,
T.
,
Schmidt
,
R.
, and
Sammakia
,
B.
,
2013
, “
Computational Study of Air Cooled Data Centers Assisted With Locally Distributed Water to Air Heat Exchangers
,”
ASME
Paper No. IMECE2013-65958.10.1115/IMECE2013-65958
43.
Mulay
,
V. P.
,
2010
, “
Analysis of Data Center Cooling Strategies and the Impact of the Dynamic Thermal Management on the Data Center Efficiency
,” available at: http://hdl.handle.net/10106/2048
44.
Sharma
,
R.
,
Bash
,
C. E.
,
Patel
,
C.
,
Friedrich
,
R.
, and
Chase
,
J.
,
2005
, “
Balance of Power—Dynamic Thermal Management of Internet Data Centers
,”
IEEE Comput. Soc.
,
9
(
1
), pp.
42
49
.10.1109/MIC.2005.10
45.
Ibrahim
,
M.
,
Gondipalli
,
S.
,
Bhopte
,
S.
,
Sammakia
,
B.
,
Murray
,
B.
,
Ghose
,
K.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2010
, “
Numerical Modeling Approach to Dynamic Data Center Cooling
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, June 2–5.10.1109/ITHERM.2010.5501335
46.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C. D.
,
2006
, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
137
144
.10.1115/1.2165214
47.
Bash
,
C. E.
,
Patel
,
C. D.
, and
Sharma
,
R. K.
,
2006
, “
Dynamic Thermal Management of Air Cooled Data Centers
,”
10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM '06
), San Diego, CA, May 30–June 2, pp.
444
452
.10.1109/ITHERM.2006.1645377
48.
Gao
,
T.
,
Samadiani
,
E.
,
Schmidt
,
R.
, and
Sammakia
,
B.
,
2013
, “
Dynamic Analysis of Hybrid Cooling Data Centers Subject to the Failure of CRAC Units
,”
ASME
Paper No. IPACK2013-73196. 10.1115/IPACK2013-73196
You do not currently have access to this content.