Abstract

As modern electronics become miniaturized with high power, thermal management for electronics devices has become significant. This motivates the implementation of new cooling solutions to dissipate high-heat levels from high-performance electronics. Evaporative cooling is one of the most promising approaches for meeting these future thermal demands. Thin-film evaporation promotes heat dissipation through the phase change process with minimal conduction resistance. In this process, it is important to design surface structures and corresponding surface properties that can minimize meniscus thickness, increase liquid–vapor interfacial area, and enhance evaporation performances. In this study, we investigate thin-film evaporation by employing nanotextured copper substrates for varying thermal conditions. The liquid spreading on the nanotextured surfaces is visualized using a high-speed imaging technique to quantify evaporative heat transfer for various surfaces. The permeability is calculated using an enhanced wicking model to estimate the evaporation effect combined with the mass measurements. Then, infrared (IR) thermography is employed to examine two-dimensional temporal temperature profiles of the samples during the evaporative wicking with a given heat flux. The combination of optical time-lapse images, evaporation rate measurements, and temperature profiles will provide a comprehensive understanding of evaporation performances using textured surfaces.

References

1.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Jankowski
,
N.
, and
Sharar
,
D.
,
2014
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
010801
.10.1115/1.4028890
2.
Bar-Cohen
,
A.
,
Albrecht
,
J. D.
, and
Maurer
,
J. J.
,
2011
, “
Near-Junction Thermal Management for Wide Bandgap Devices
,”
IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
,
Waikoloa, HI
, pp.
1
5
.
3.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2015
, “
Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
6
), pp.
737
744
.https://ieeexplore.ieee.org/document/7122297
4.
Murshed
,
S. S.
, and
Nieto De Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.10.1016/j.rser.2017.04.112
5.
Naphon
,
P.
,
Wiriyasart
,
S.
, and
Wongwises
,
S.
,
2015
, “
Thermal Cooling Enhancement Techniques for Electronic Components
,”
Int. Commun. Heat Mass Transfer
,
61
, pp.
140
145
.10.1016/j.icheatmasstransfer.2014.12.005
6.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
7.
Kandlikar
,
S. G.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.10.1080/01457630591003655
8.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
9.
Won
,
Y.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2011
, “
3-D Visualization of Flow in Microscale Jet Impingement Systems
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
325
331
.10.1016/j.ijthermalsci.2010.08.005
10.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J.-M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2004
, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
833
842
.10.1109/JMEMS.2004.835768
11.
Alvarado
,
J. L.
, and
Lin
,
Y.-P.
,
2011
, “
Multiple Droplet Impingements on Nanostructured Surfaces for Enhanced Spray Cooling
,”
ASME
Paper No. AJTEC2011-44509.10.1115/AJTEC2011-44509
12.
Wong
,
S.-C.
,
Liou
,
J.-H.
, and
Chang
,
C.-W.
,
2010
, “
Evaporation Resistance Measurement With Visualization for Sintered Copper-Powder Evaporator in Operating Flat-Plate Heat Pipes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3792
3798
.10.1016/j.ijheatmasstransfer.2010.04.031
13.
Ma
,
H. B.
,
Lofgreen
,
K. P.
, and
Peterson
,
G. P.
,
2006
, “
An Experimental Investigation of a High Flux Heat Pipe Heat Sink
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
18
22
.10.1115/1.2159004
14.
Srimuang
,
W.
, and
Amatachaya
,
P.
,.
2012
, “
A Review of the Applications of Heat Pipe Heat Exchangers for Heat Recovery
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4303
4315
.10.1016/j.rser.2012.03.030
15.
Jouhara
,
H.
,
Chauhan
,
A.
,
Nannou
,
T.
,
Almahmoud
,
S.
,
Delpech
,
B.
, and
Wrobel
,
L. C.
,
2017
, “
Heat Pipe Based systems-Advances and Applications
,”
Energy
,
128
, pp.
729
754
.10.1016/j.energy.2017.04.028
16.
Isaacs
,
S. A.
,
Arias
,
D. A.
,
Hengeveld
,
D.
, and
Hamlington
,
P. E.
,
2017
, “
Experimental Development and Computational Optimization of Flat Heat Pipes for CubeSat Applications
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020910
.10.1115/1.4036406
17.
Shukla
,
K. N.
,
2009
, “
Heat Transfer Limitation of a Micro Heat Pipe
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
024502
.10.1115/1.3103970
18.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4204
4215
.10.1016/j.ijheatmasstransfer.2010.05.043
19.
Patankar
,
G.
,
Mancin
,
S.
,
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
MacDonald
,
M. A.
,
2016
, “
A Method for Thermal Performance Characterization of Ultrathin Vapor Chambers Cooled by Natural Convection
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010903
.10.1115/1.4032345
20.
Byon
,
C.
, and
Kim
,
S. J.
,
2012
, “
Capillary Performance of Bi-Porous Sintered Metal Wicks
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4096
4103
.10.1016/j.ijheatmasstransfer.2012.03.051
21.
Montazeri
,
K.
,
Lee
,
H.
, and
Won
,
Y.
,
2018
, “
Microscopic Analysis of Thin-Film Evaporation on Spherical Pore Surfaces
,”
Int. J. Heat Mass Transfer
,
122
, pp.
59
68
.10.1016/j.ijheatmasstransfer.2018.01.002
22.
Tang
,
Y.
,
Tang
,
H.
,
Li
,
J.
,
Zhang
,
S.
,
Zhuang
,
B.
, and
Sun
,
Y.
,
2017
, “
Experimental Investigation of Capillary Force in a Novel Sintered Copper Mesh Wick for Ultra-Thin Heat Pipes
,”
Appl. Therm. Eng.
,
115
, pp.
1020
1030
.10.1016/j.applthermaleng.2016.12.056
23.
Zhou
,
W.
,
Ling
,
W.
,
Duan
,
L.
,
Hui
,
K. S.
, and
Hui
,
K. N.
,
2016
, “
Development and Tests of Loop Heat Pipe With Multi-Layer Metal Foams as Wick Structure
,”
Appl. Therm. Eng.
,
94
, pp.
324
330
.10.1016/j.applthermaleng.2015.10.085
24.
Ling
,
W.
,
Zhou
,
W.
,
Liu
,
R.
,
Qiu
,
Q.
, and
Liu
,
J.
,
2016
, “
Thermal Performance of Loop Heat Pipe With Porous Copper Fiber Sintered Sheet as Wick Structure
,”
Appl. Therm. Eng.
,
108
, pp.
251
260
.10.1016/j.applthermaleng.2016.07.121
25.
Pham
,
Q. N.
,
Shao
,
B.
,
Kim
,
Y.
, and
Won
,
Y.
,
2018
, “
Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control
,”
ACS Appl. Mater. Interfaces
,
10
(
18
), pp.
16015
16023
.10.1021/acsami.8b02665
26.
Lee
,
J.
,
Suh
,
Y.
,
Dubey
,
P. P.
,
Barako
,
M. T.
, and
Won
,
Y.
,
2019
, “
Capillary Wicking in Hierarchically Textured Copper Nanowire Arrays
,”
ACS Appl. Mater. Interfaces
,
11
(
1
), pp.
1546
1554
.10.1021/acsami.8b14955
27.
Pham
,
Q. N.
,
Barako
,
M. T.
,
Tice
,
J.
, and
Won
,
Y.
,
2017
, “
Microscale Liquid Transport in Polycrystalline Inverse Opals Across Grain Boundaries
,”
Sci. Rep.
,
7
(
1
), p.
10465
.10.1038/s41598-017-10791-3
28.
Cheng
,
J.
,
Wang
,
G.
,
Zhang
,
Y.
,
Pi
,
P.
, and
Xu
,
S.
,
2017
, “
Enhancement of Capillary and Thermal Performance of Grooved Copper Heat Pipe by Gradient Wettability Surface
,”
Int. J. Heat Mass Transfer
,
107
, pp.
586
591
.10.1016/j.ijheatmasstransfer.2016.10.078
29.
Dubey
,
P. P.
,
Pham
,
Q. N.
,
Cho
,
H.
,
Kim
,
Y.
, and
Won
,
Y.
,
2017
, “
Controlled Wetting Properties Through Heterogeneous Surfaces Containing Two-Level Nanofeatures
,”
ACS Omega
,
2
(
11
), pp.
7916
7922
.10.1021/acsomega.7b01178
You do not currently have access to this content.