Abstract

The effect of trace Nb nanoparticles on the thermal properties, wettability, microstructure, and mechanical properties of Sn–0.7Cu solder alloy was investigated. The results showed that the melting temperature of Sn–0.7Cu composite solder alloy is between 229 °C and 231 °C, and the effect of Nb nanoparticles on the melting temperature is not obvious. The wettability of the solder alloy is remarkably improved by adding Nb nanoparticles. Coarse β-Sn phase and β-Sn/Cu6Sn5 eutectic in the Sn–0.7Cu composite solder alloys are refined by adding appropriate Nb nanoparticles, and then the ultimate tensile strength (37.3 MPa) and the elongation (2.47 mm) of Sn–0.7Cu alloy are increased to the maximum 45.4 MPa and 4.59 mm for Nb-containing alloy. The fracture mechanism of Sn–0.7Cu–xNb composite solder alloys is plastic fracture.

References

1.
Lai
,
Z.
, and
Ye
,
D.
,
2016
, “
Effect of Al on the Microstructure and Properties of Sn-0.7Cu Solder Alloy
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
2
), pp.
1177
1183
.10.1007/s10854-015-3870-x
2.
Spinelli
,
J. E.
, and
Garcia
,
A. J.
,
2014
, “
Development of Solidification Microstructure and Tensile Mechanical Properties of Sn-0.7Cu and Sn-0.7Cu-2.0Ag Solders
,”
J. Mater. Sci.: Mater. Electron.
,
25
(
1
), pp.
478
486
.10.1007/s10854-013-1612-5
3.
Mohd Salleh
,
M. A. A.
,
McDonald
,
S. D.
,
Gourlay
,
C. M.
,
Belyakov
,
S. A.
,
Yasuda
,
H.
, and
Nogita
,
K.
,
2016
, “
Effect of Ni on the Formation and Growth of Primary Cu6Sn5 Intermetallics in Sn-0.7 wt. % Cu Solder Pastes on Cu Substrates During the Soldering Process
,”
J. Electron. Mater.
,
45
(
1
), pp.
154
163
.10.1007/s11664-015-4121-x
4.
Chen
,
X.
,
Zhou
,
J.
,
Xue
,
F.
, and
Yao
,
Y.
,
2016
, “
Mechanical Deformation Behavior and Mechanism of Sn-58Bi Solder Alloys Under Different Temperatures and Strain Rates
,”
Mater. Sci. Eng. A
,
662
, pp.
251
257
.10.1016/j.msea.2016.03.072
5.
Tian
,
S.
,
Li
,
S.
,
Zhou
,
J.
,
Xue
,
F.
,
Cao
,
R.
, and
Wang
,
F.
,
2017
, “
Effect of Indium Addition on Interfacial IMC Growth and Bending Properties of Eutectic Sn–0.7Cu Solder Joints
,”
J. Mater. Sci.: Mater. Electron.
,
28
(
21
), pp.
16120
16132
.10.1007/s10854-017-7512-3
6.
Wang
,
H.
,
Fang
,
J.
,
Xu
,
Z.
, and
Zhang
,
X.
,
2015
, “
Improvement of Ga and Zn Alloyed Sn-0.7Cu Solder Alloys and Joints
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
6
), pp.
3589
3595
.10.1007/s10854-015-2873-y
7.
Lai
,
Y.
,
Hu
,
X.
,
Jiang
,
X.
, and
Li
,
Y.
,
2018
, “
Effect of Ni Addition to Sn0.7Cu Solder Alloy on Thermal Behavior, Microstructure, and Mechanical Properties
,”
J. Mater. Eng. Perform.
,
27
, pp.
1
13
.10.1007/s11665-018-3734-7
8.
Sun
,
L.
,
Zhang
,
L.
,
Xu
,
L.
,
Zhong
,
S. J.
,
Ma
,
J.
, and
Bao
,
L.
,
2016
, “
Effect of Nano-Al Addition on Properties and Microstructure of Low-Ag Content Sn-1Ag-0.5Cu Solders
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
7
), pp.
7665
7673
.10.1007/s10854-016-4751-7
9.
Shao
,
H.
,
Wu
,
A.
,
Bao
,
Y.
,
Zhao
,
Y.
,
Zou
,
G.
, and
Liu
,
L.
,
2018
, “
Microstructure Evolution and Mechanical Properties of Cu/Sn/Ag TLP-Bonded Joint During Thermal Aging
,”
Mater. Charact.
,
144
, pp.
469
478
.10.1016/j.matchar.2018.07.041
10.
Yang
,
L.
,
Ge
,
J.
,
Zhang
,
Y.
,
Dai
,
J.
,
Liu
,
H.
, and
Xiang
,
J.
,
2016
, “
Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu-xNi/Cu Solder Joints
,”
J. Electron. Mater.
,
45
(
7
), pp.
3766
3775
.10.1007/s11664-016-4509-2
11.
Fan
,
J.
,
Zhai
,
H.
,
Liu
,
Z.
,
Wang
,
X.
,
Zhou
,
X.
,
Wang
,
Y.
,
Li
,
Y.
,
Gao
,
H.
, and
Liu
,
J.
,
2020
, “
Microstructure Evolution, Thermal and Mechanical Property of Co Alloyed Sn-0.7Cu Lead-Free Solder
,”
J. Electron. Mater.
,
49
(
4
), pp.
2660
2668
.10.1007/s11664-020-07960-y
12.
Fathian
,
Z.
,
Maleki
,
A.
, and
Niroumand
,
B.
,
2017
, “
Synthesis and Characterization of Ceramic Nanoparticles Reinforced Lead-Free Solder
,”
Ceram. Int.
,
43
(
6
), pp.
5302
5310
.10.1016/j.ceramint.2017.01.067
13.
Kong
,
X.
,
Zhai
,
J.
,
Sun
,
F.
,
Liu
,
Y.
, and
Zhang
,
H.
,
2020
, “
Combined Effect of Bi and Ni Elements on the Mechanical Properties of Low-Ag Cu/Sn-0.7Ag-0.5Cu/Cu Solder Joints
,”
Microelectron. Reliab.
,
107
, p.
113618
.10.1016/j.microrel.2020.113618
14.
Mohammadi
,
A.
, and
Mahmudi
,
R.
,
2018
, “
Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu-xSiC Nanocomposite Solders
,”
J. Electron. Mater.
,
47
(
2
), pp.
1721
1729
.10.1007/s11664-017-5923-9
15.
Abd El-Rehim
,
A. F.
,
Zahran
,
H. Y.
, and
Yassin
,
A. M.
,
2019
, “
Microstructure Evolution and Tensile Creep Behavior of Sn–0.7Cu Lead-Free Solder Reinforced With ZnO Nanoparticles
,”
J. Mater. Sci.: Mater. Electron.
,
30
(
3
), pp.
2213
2223
.10.1007/s10854-018-0492-0
16.
Sun
,
R.
,
Sui
,
Y.
,
Qi
,
J.
,
Wei
,
F.
,
He
,
Y.
,
Chen
,
X.
,
Meng
,
Q.
, and
Sun
,
Z.
,
2017
, “
Influence of SnO2 Nanoparticles Addition on Microstructure, Thermal Analysis, and Interfacial IMC Growth of Sn1.0Ag0.7Cu Solder
,”
J. Electron. Mater.
,
46
(
7
), pp.
4197
4205
.10.1007/s11664-017-5374-3
17.
El-Daly
,
A. A.
,
Hammad
,
A. E.
,
Al-Ganainy
,
G. S.
, and
Ragab
,
M.
,
2014
, “
Influence of Zn Addition on the Microstructure, Melt Properties and Creep Behavior of Low Ag-Content Sn-Ag-Cu Lead-Free Solders
,”
Mater. Sci. Eng. A
,
608
, pp.
130
138
.10.1016/j.msea.2014.04.070
18.
Li
,
Y.
,
Zhao
,
X. C.
,
Liu
,
Y.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2014
, “
Effect of TiO2 Addition Concentration on the Wettability and Intermetallic Compounds Growth of Sn3.0Ag0.5Cu-xTiO2 Nano-Composite Solders
,”
J. Mater. Sci.: Mater. Electron.
,
25
(
9
), pp.
3816
3827
.10.1007/s10854-014-2094-9
19.
Gu
,
Y.
,
Zhao
,
X.
,
Li
,
Y.
,
Liu
,
Y.
,
Wang
,
Y.
, and
Li
,
Z.
,
2015
, “
Effect of Nano-Fe2O3 Additions on Wettability and Interfacial Intermetallic Growth of Low-Ag Content Sn-Ag-Cu Solders on Cu Substrates
,”
J. Alloys Compd.
,
627
, pp.
39
47
.10.1016/j.jallcom.2014.12.024
20.
Wu
,
J.
,
Xue
,
S.
,
Wang
,
J.
,
Wu
,
M.
, and
Wang
,
J.
,
2018
, “
Effects of α-Al2O3 Nanoparticles-Doped on Microstructure and Properties of Sn-0.3Ag-0.7Cu Low-Ag Solder
,”
J. Mater. Sci.: Mater. Electron.
,
29
(
9
), pp.
7372
7387
.10.1007/s10854-018-8727-7
21.
Chen
,
P.
,
Zhao
,
X. C.
,
Wang
,
Y.
,
Zheng
,
B.
,
Liu
,
C. L.
, and
Chen
,
S. Q.
,
2016
, “
Effect of Nano α-Fe2O3 Additions on Physical and Mechanical Properties of Sn-1.0Ag-0.7Cu-xFe2O3 Low Ag Lead-Free Solders
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
2
), pp.
1507
1519
.10.1007/s10854-015-3918-y
22.
Wu
,
J.
,
Xue
,
S. B.
,
Wang
,
J. W.
,
Liu
,
S.
,
Han
,
Y. L.
, and
Wang
,
L. J.
,
2016
, “
Recent Progress of Sn-Ag-Cu Lead-Free Solders Bearing Alloy Elements and Nanoparticles in Electronic Packaging
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
12
), pp.
12729
12763
.10.1007/s10854-016-5407-3
23.
Zhao
,
M.
,
Zhang
,
L.
,
Sun
,
L.
,
Xiong
,
M.-Y.
,
Jiang
,
N.
, and
Xu
,
K.-K.
,
2020
, “
Effects of Nanoparticles on Properties and Interface Reaction of Sn Solder for Microelectronic Packaging
,”
Int. J. Mod. Phys. B
,
34
(
08
), p.
2050064
.10.1142/S0217979220500642
24.
Liu
,
S.
,
Xue
,
S.-B.
,
Zhong
,
S.-J.
,
Pei
,
Y.-Y.
, and
Sun
,
H.-W.
,
2019
, “
Properties and Microstructure of Sn-0.7Cu-0.05Ni Lead-Free Solders With Rare Earth Nd Addition
,”
J. Mater. Sci.: Mater. Electron.
,
30
(
2
), pp.
1400
1410
.10.1007/s10854-018-0410-5
25.
Tsao
,
L. C.
,
Huang
,
C. H.
,
Chung
,
C. H.
, and
Chen
,
R. S.
,
2012
, “
Influence of TiO2 Nanoparticles Addition on the Microstructural and Mechanical Properties of Sn0.7Cu Nano-Composite Solder
,”
Mater. Sci. Eng. A.
,
545
, pp.
194
200
.10.1016/j.msea.2012.03.025
26.
Xu
,
S.
,
Habib
,
A. H.
,
Prasitthipayong
,
A.
, and
Mchenry
,
M. E.
,
2013
, “
Effects of FeCo Magnetic Nanoparticles on Microstructure of Sn-Ag-Cu Alloys
,”
J. Appl. Phys.
,
113
, p.
37A301
.10.1063/1.4793502
27.
Tun
,
K. S.
, and
Gupta
,
M.
,
2007
, “
Improving Mechanical Properties of Magnesium Using Nano-Yttria Reinforcement and Microwave Assisted Powder Metallurgy Method
,”
Compos. Sci. Technol.
,
67
(
13
), pp.
2657
2664
.10.1016/j.compscitech.2007.03.006
28.
Goh
,
C.
,
Wei
,
J.
,
Lee
,
L.
, and
Gupta
,
M.
,
2007
, “
Properties and Deformation Behavior of Mg-Y2O3 Nanocomposites
,”
Acta Mater.
,
55
(
15
), pp.
5115
5121
.10.1016/j.actamat.2007.05.032
29.
Wang
,
Y.
,
Zhao
,
X.
,
Xie
,
X.
,
Gu
,
Y.
, and
Liu
,
Y.
,
2015
, “
Effects of Nano-SiO2 Particles Addition on the Microstructure, Wettability, Joint Shear Force and the Interfacial IMC Growth of Sn3.0Ag0.5Cu Solder
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
12
), pp.
9387
9395
.10.1007/s10854-015-3151-8
30.
Geranmayeh
,
A. R.
,
Mahmudi
,
R.
, and
Kangooie
,
M.
,
2011
, “
High-Temperature Shear Strength of Lead-Free Sn-Sb-Ag/Al2O3 Composite Solder
,”
Mater. Sci. Eng. A
,
528
(
12
), pp.
3967
3972
.10.1016/j.msea.2011.02.034
31.
Sharma
,
A.
,
Baek
,
B. G.
, and
Jung
,
J. P.
,
2015
, “
Influence of La2O3 Nanoparticle Additions on Microstructure, Wetting, and Tensile Characteristics of Sn-Ag-Cu Alloy
,”
Mater. Des.
,
87
, pp.
370
379
.10.1016/j.matdes.2015.07.137
32.
Zhong
,
X. L.
, and
Gupta
,
M.
,
2008
, “
Development of Lead-Free Sn-0.7Cu/Al2O3 Nanocomposite Solders With Superior Strength
,”
J. Appl. Phys.
,
41
(
9
), p.
095403
.10.1088/0022-3727/41/9/095403
33.
Bakshi
,
S. R.
, and
Agarwal
,
A.
,
2011
, “
An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites
,”
Carbon
,
49
(
2
), pp.
533
544
.10.1016/j.carbon.2010.09.054
34.
Rashad
,
R. M.
,
Awadallah
,
O. M.
, and
Wifi
,
A. S.
,
2013
, “
Effect of MWCNTs Content on the Characteristics of A356 Nanocomposite
,”
J. Achiev. Mater. Manuf. Eng.
,
2
, pp.
74
80
.http://jamme.acmsse.h2.pl/papers_vol58_2/5822.pdf
35.
Billah
,
M. M.
, and
Chen
,
Q.
,
2016
, “
Strength of MWCNT-Reinforced 70Sn-30Bi Solder Alloys
,”
J. Electron. Mater.
,
45
(
1
), pp.
98
103
.10.1007/s11664-015-4109-6
36.
El-Daly
,
A. A.
,
Fawzy
,
A.
,
Mansour
,
S. F.
, and
Younis
,
M. J.
,
2013
, “
Thermal Analysis and Mechanical Properties of Sn1.0Ag0.5Cu Solder Alloy After Modification With SiC Nano-Sized Particles
,”
J. Mater. Sci.: Mater. Electron.
,
24
(
8
), pp.
2976
2988
.10.1007/s10854-013-1200-8
You do not currently have access to this content.