Abstract

This paper presents a straight-forward finite element approach for the quantification of electronic package thermal performance under uncertainty. The method makes use of high accuracy sensitivity calculations and a gradient-based minimization method. The approach was applied to the thermal analysis of a ball grid array (BGA) package under uncertainty to illustrate its capabilities. The effect of uncertainty in the heat source, heat transfer coefficient, ambient temperature, and thermal conductivities of the component materials on the probability of exceeding a specified average junction temperature at the die-heat-spreader interface was studied. In addition, the performance and accuracy of two different methods for computing the required sensitivities were compared. Results showed that the average junction temperature probability was more sensitive to some system parameters over others, providing crucial information for selecting the manufacturing tolerance of BGA package components. For parameters identified as especially sensitive, selecting components with tighter tolerances will reduce uncertainty and increase the overall reliability. And for less sensitive parameters, selecting larger tolerance could help reduce manufacturing costs.

References

1.
Azizsoltani
,
H.
, and
Haldar
,
A.
,
2018
, “
Reliability Analysis of Lead-Free Solders in Electronic Packaging Using a Novel Surrogate Model and Kriging Concept
,”
ASME J. Electron. Packag.
,
140
(
4
), p. 041003.10.1115/1.4040924
2.
Tucker
,
J.
,
Dhakal
,
R.
,
Thiel
,
G.
, and
Jadhav
,
V.
,
2018
, “
A Monte Carlo Approach to Predicting Failure Across Multiple Temperature and Humidity Field Environments
,” IEEE 68th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29–June 1, pp.
144
149
.10.1109/ECTC.2018.00030
3.
Pang
,
J. H.
,
Chong
,
D. Y. R.
, and
Low
,
T. H.
,
2001
, “
Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability
,”
IEEE Trans. Compon. Packaging Technol.
,
24
(
4
), pp.
705
712
.10.1109/6144.974964
4.
Lu
,
H.
,
Bailey
,
C.
, and
Cross
,
M.
,
2000
, “
Reliability Analysis of Flip Chip Designs Via Computer Simulation
,”
ASME J. Electron. Packag.
,
122
(
3
), pp.
214
219
.10.1115/1.1286122
5.
Lau
,
J. H.
,
Shangguan
,
D.
,
Lau
,
D. C. Y.
,
Kung
,
T. T. W.
, and
Lee
,
S. W. R.
,
2004
, “
Thermal Fatigue Life Prediction Equation for Wafer-Level Chep Scale Package (WLCSP) Lead-Free Solder Joints on Lead-Free Printed Circuit Board (PCB)
,”
Proceedings of 54th Electronic Components & Technology Conference
, IEEE, Las Vegas, NV, June 4, pp.
1563
1569
.10.1109/ECTC.2004.1320324
6.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present, and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.10.1016/j.cma.2008.11.007
7.
Grisham
,
J.
,
Akbariyeh
,
A.
,
Jin
,
W.
,
Dennis
,
B. H.
, and
Wang
,
B. P.
,
2018
, “
Semi-Analytic Complex Variable Method for Computing Sensitivities in Heat Transfer Problems
,”
ASME J. Heat Transfer
,
140
(
8
), p.
082006
.10.1115/1.4039541
8.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.10.1061/JMCEA3.0001848
9.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.10.1016/0045-7949(78)90046-9
10.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
, Hoboken, NJ.
11.
Yanfang
,
Z.
,
Yanlin
,
Z.
, and
Yimin
,
Z.
,
2011
, “
Reliability Sensitivity Based on First-Order Reliability Method
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
9
), pp.
2189
2197
.10.1177/0954406211405938
12.
Parameswaran
,
N.
, and
Kjerengtroen
,
L.
,
1994
, “
Determination of Failure Probabilities and Sensitivity Factors Based on First Order Reliability Method
,”
ASME
Paper No. DETC1994-0092.10.1115/DETC1994-0092
13.
Jin
,
W.
,
Dennis
,
B. H.
,
He
,
X.
,
Wang
,
B. P.
, and
Gao
,
Z.
,
2014
, “
FORM Based Reliability Analysis With Accurate Sensitivity for Heat Conduction
,”
ASME
Paper No. ESDA2014-20574.10.1115/ESDA2014-20574
14.
Abubakar
,
U.
,
Mohammed
,
I. A.
,
Dan-Asabe
,
B.
, and
Alkali
,
A.
,
2014
, “
Reliability Based Performance Modelling and Evaluation: A Case Study of Heat Exchanger
,”
Int. J. Energy Environ. (IJEE)
,
5
(
2
), pp.
257
268
.https://www.ijee.ieefoundation.org/vol5/issue2/IJEE_09_v5n2.pdf
15.
Hirohata
,
K.
,
Hisano
,
K.
,
Mukai
,
M.
,
Takahashi
,
H.
,
Kawamura
,
N.
,
Iwasaki
,
H.
,
Kawakami
,
T.
,
Yu
,
Q.
, and
Shiratori
,
M.
,
2004
, “
Multidisciplinary Reliability Design of Electronics Packaging Based on the First Order Reliability Method and Structural Equation Modeling
,”
AIAA
Paper No. 2004-4621.10.2514/6.2004-4621
16.
Jin
,
W.
,
Dennis
,
B. H.
, and
Wang
,
B. P.
,
2010
, “
Improved Sensitivity Analysis Using a Complex Variable Semi-Analytical Method
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
433
439
.10.1007/s00158-009-0427-8
17.
Jin
,
W.
,
2008
, “
Semi-Analytical Complex Variable Based Stochastic Finite Element Method
,”
Ph.D. thesis
,
The University of Texas at Arlington
, Arlington, TX.http://hdl.handle.net/10106/1881
18.
Patil
,
S.
,
Chintamani
,
S.
,
Kumar
,
R.
, and
Dennis
,
B. H.
,
2016
, “
Determination of Orthotropic Thermal Conductivity in Heat Generating Cylinder
,”
ASME
Paper No. IMECE2016-67918.10.1115/IMECE2016-67918
19.
Patil
,
S.
,
Chintamani
,
S.
,
Grisham
,
J.
,
Kumar
,
R.
, and
Dennis
,
B. H.
,
2015
, “
Inverse Determination of Temperature Distribution in Partially Cooled Heat Generating Cylinder
,”
ASME
Paper No. IMECE2015-52124. 10.1115/IMECE2015-52124
20.
Fabela
,
O.
,
Patil
,
S.
,
Chintamani
,
S.
, and
Dennis
,
B. H.
,
2017
, “
Estimation of Affective Thermal Conductivity of Porous Media Utilizing Inverse Heat Transfer Analysis on Cylindrical Configuration
,”
ASME
Paper No. IMECE2017-71559.10.1115/IMECE2017-71559
21.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2010
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.