Abstract

Effective thermal management of traction-drive power electronics is critical to the advancement of electric-drive vehicles (EDVs) and is necessary for increasing power density and improving reliability. Replacing traditional silicon devices with more efficient, higher temperature, higher voltage, and higher frequency wide-bandgap (WBG) devices will enable increased power density but will result in higher device heat fluxes. Compact packaging of high-temperature WBG devices near low-temperature-rated components creates thermal management challenges that need to be addressed for future power-dense systems. This paper summarizes the thermal performance of on-road automotive power electronics thermal management systems and provides thermal performance metrics for select vehicles. Thermal analyses reveal that the package resistance dominates the total thermal resistance (for existing automotive systems). Advanced packaging concepts were modeled and the results were compared with existing packaging designs to quantify their thermal performance enhancements. Double-side (DS)-cooled configurations that do not use thermal interface materials (TIMs) are package concepts predicted to provide a low junction-to-fluid thermal resistance (compared to current packages). Dielectric-fluid-cooled concepts enable a redesign of the package to reduce the package resistance, can be implemented in single- and two-phase cooling approaches, and allow for cooling of passive components (e.g., capacitors) and bus bars.

References

1.
USDRIVE
,
2017
, “
Electrical and Electronics Technical Team Roadmap
,” U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office, Southfield, MI, accessed Feb. 15, 2021, https://www.energy.gov/eere/vehicles/downloads/us-drive-electrical-and-electronics-technical-team-roadmap
2.
PowerAmerica
,
2020
, “
PowerAmerica's Strategic Roadmap for Next Generation Wide Bandgap Power Electronics
,” PowerAmerica, Version 4.2, Raleigh, NC, accessed Feb. 15, 2021, https://poweramericainstitute.org/wp-content/uploads/2020/05/PowerAmerica_Roadmap_4.2_April-2020-Public-Version.pdf
3.
Bennion
,
K.
, and
Moreno
,
G.
,
2010
, “
Thermal Management of Power Semiconductor Packages-Matching Cooling Technology With Packaging Technologies
,” Proceedings of Second Advanced Technical Workshop on Automotive Microelectronics and Packaging, Dearborn, MI, Apr. 27, Paper No.
NREL/PR-540-48147
.https://www.nrel.gov/docs/fy10osti/48147.pdf
4.
Moreno
,
G.
,
Bennion
,
K.
,
King
,
C.
, and
Narumanchi
,
S.
,
2016
, “
Evaluation of Performance and Opportunities for Improvements in Automotive Power Electronics Systems
,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3, pp.
185
192
.10.1109/ITHERM.2016.7517548
5.
Burress
,
T.
, and
Campbell
,
S.
,
2013
, “
Benchmarking EV and HEV Power Electronics and Electric Machines
,” IEEE Transportation Electrification Conference and Expo (
ITEC
), Detroit, MI, June 16–19, pp.
1
6
.10.1109/ITEC.2013.6574498
6.
Feng
,
X.
,
2017
, “
Thermal Performance Benchmarking: FY 2016 Annual Progress Report for Electric Drive Technologies Program
,” U.S. Department of Energy Vehicle Technologies Office, Washington, DC, Report No.
DOE/EE-1532
.https://www.nrel.gov/docs/fy18osti/67118.pdf
7.
Anwar
,
M.
,
Hayes
,
M.
,
Tata
,
A.
,
Teimorzadeh
,
M.
, and
Achatz
,
T.
,
2015
, “
Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV
,”
SAE Int. J. Altern. Powertrains
,
4
(
1
), pp.
145
152
.10.4271/2015-01-1201
8.
Burress
,
T.
,
Coomer
,
C.
,
Campbell
,
S.
,
Wereszczak
,
A.
,
Cunningham
,
J.
,
Marlino
,
L.
,
Seiber
,
L.
, and
Lin
,
H.-T.
,
2009
, “
Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2008-185
.https://www.osti.gov/servlets/purl/947393
9.
Bennion
,
K.
, and
Kelly
,
K.
,
2009
, “
Rapid Modeling of Power Electronics Thermal Management Technologies
,”
IEEE Vehicle Power and Propulsion Conference
, Dearborn, MI, Sept. 7–10, pp.
622
629
.10.1109/VPPC.2009.5289791
10.
Anwar
,
M.
,
Hasan
,
S. M. N.
,
Teimor
,
M.
,
Korich
,
M.
, and
Hayes
,
M. B.
,
2015
, “
Development of a Power Dense and Environmentally Robust Traction Power Inverter for the Second-Generation Chevrolet VOLT Extended-Range EV
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Montreal, ON, Canada, Sept. 20–24, pp.
6006
6013
.10.1109/ECCE.2015.7310502
11.
Anwar
,
M.
,
Alam
,
M. K.
,
Gleason
,
S. E.
, and
Setting
,
J.
, "Traction Power Inverter Design for EV and HEV Applications at General Motors: A Review," 2019 IEEE Energy Conversion Congress and Exposition (
ECCE
), Baltimore, MD, Sept. 29–Oct. 3, pp.
6346
6351
.10.1109/ECCE.2019.8913098
12.
Anwar
,
M.
,
Teimor
,
M.
,
Savagian
,
P.
,
Saito
,
R.
, and
Matsuo
,
T.
,
2016
, “
Compact and High Power Inverter for the Cadillac CT6 Rear Wheel Drive PHEV
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Milwaukee, WI, Sept. 18–22, pp.
1
7
.10.1109/ECCE.2016.7854931
13.
Lau
,
J. H.
, and
Pao
,
Y.-H.
,
1997
,
Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies
,
McGraw-Hill Professional Publishing
, New York.
15.
Burress
,
T. A.
,
2017
, “
Benchmarking Electric Vehicles and Hybrid Electric Vehicles: FY16 Annual Progress Report for Electric Drive Technologies Program
,” U.S. Department of Energy Vehicle Technologies Office, Advanced Power Electronics and Electric Machines Program, Washington, DC.
16.
Burress
,
T. A.
,
2011
, “
Benchmarking Competitive Technologies: 2010 Advanced Power Electronics and Electric Motors DOE Report
,” U.S. Department of Energy Vehicle Technologies Office, Advanced Power Electronics and Electric Machines Program, Washington, DC.
17.
Broughton
,
J.
,
Smet
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
,
2018
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.10.1115/1.4040828
18.
Reimers
,
J.
,
Dorn-Gomba
,
L.
,
Mak
,
C.
, and
Emadi
,
A.
,
2019
, “
Automotive Traction Inverters: Current Status and Future Trends
,”
IEEE Trans. Veh. Technol.
,
68
(
4
), pp.
3337
3350
.10.1109/TVT.2019.2897899
19.
Liang
,
Z.
,
2012
, “
Status and Trend of Automotive Power Packaging
,”
24th International Symposium on Power Semiconductor Devices and ICs
, Bruges, Belgium, June 3–7, pp.
325
331
.10.1109/ISPSD.2012.6229088
20.
Chowdhury
,
S.
,
Gurpinar
,
E.
,
Su
,
G.
,
Raminosoa
,
T.
,
Burress
,
T. A.
, and
Ozpineci
,
B.
,
2019
, “
Enabling Technologies for Compact Integrated Electric Drives for Automotive Traction Applications
,” 2019 IEEE Transportation Electrification Conference and Expo (
ITEC
), Detroit, MI, June 19–21, pp.
1
8
.10.1109/ITEC.2019.8790594
21.
Qian
,
C.
,
Gheitaghy
,
A. M.
,
Fan
,
J.
,
Tang
,
H.
,
Sun
,
B.
,
Ye
,
H.
, and
Zhang
,
G.
,
2018
, “
Thermal Management on IGBT Power Electronic Devices and Modules
,”
IEEE Access
,
6
, pp.
12868
12884
.10.1109/ACCESS.2018.2793300
22.
Moreno
,
G.
,
2015
, “
Thermal Performance Benchmarking: 2015 Electric Drive Technologies DOE Report, Electric Drive Technologies, 2015 Annual Report
,” U.S. Department of Energy, Washington, DC, Report No. DOE-EE/1318.
23.
Wei
,
R.
,
Song
,
S.
,
Yang
,
K.
,
Cui
,
Y.
,
Peng
,
Y.
,
Chen
,
X.
,
Hu
,
X.
, and
Xu
,
X.
,
2013
, “
Thermal Conductivity of 4H-SiC Single Crystals
,”
J. Appl. Phys.
, 113(5), p.
053503
.10.1063/1.4790134
24.
Rogers Corporation
,
2019
, “Technical-Data-Sheet-Curamik-Ceramic-Substrates,” Curamik Ceramic Substrates Technical Data Sheet [Online], Rogers Corporation, Chandler, AZ, accessed Feb. 10, 2021, https://rogerscorp.com/-/media/project/rogerscorp/documents/power-electronics-solutions/english/data-sheets/technical-data-sheet-curamik-ceramic-substrates.pdf
25.
MatWeb
,
2020
, “
Aluminum 6061-T6; 6061-T651
,” MatWeb, Blacksburg, VA, accessed Jan. 28, 2020, http://www.matweb.com/search/datasheet_print.aspx? matguid=1b8c06d0ca7c456694c7777d9e10be5b
26.
Bennion
,
K.
,
Cousineau
,
J.
,
Lustbader
,
J.
, and
Narumanchi
,
S.
,
2014
, “
Novel Power Electronics Three-Dimensional Heat Exchanger
,” IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
1055
1063
.10.1109/ITHERM.2014.6892398
27.
Bennion
,
K.
, and
Lustbader
,
J.
,
2013
, “
Integrated Three-Dimensional Module Heat Exchanger for Power Electronics Cooling
,” Patent No. 8,541,875.
28.
Moreno
,
G.
,
Narumanchi
,
S.
,
Venson
,
T.
, and
Bennion
,
K.
,
2013
, “
Microstructured Surfaces for Single-Phase Jet Impingement Heat Transfer Enhancement
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031004
.10.1115/1.4023308
29.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Moreno
,
G.
, and
Bennion
,
K.
,
2012
, “
Design of Light-Weight, Single-Phase Liquid-Cooled Heat Exchanger for Automotive Power Electronics
,” 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 30–June 1, pp.
693
699
.10.1109/ITHERM.2012.6231495
30.
Waye
,
S. K.
,
Narumanchi
,
S.
,
Mihalic
,
M.
,
Moreno
,
G.
,
Bennion
,
K.
, and
Jeffers
,
J.
,
2014
, “
Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces
,” Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
1064
1073
.10.1109/ITHERM.2014.6892399
31.
Zhou
,
F.
,
Dede
,
E. M.
,
Joshi
,
S. N.
,
Ave
,
W.
, and
Arbor
,
A.
,
2015
, “
A Novel Design of Hybrid Slot Jet and Mini-Channel Cold Plate for Electronics Cooling
,”
31st SEMI-THERM Symposium
, San Jose, CA, Mar. 15–19, p.
8
.10.1109/SEMI-THERM.2015.7100141
32.
Agbim
,
K. A.
,
Pahinkar
,
D. G.
, and
Graham
,
S.
,
2019
, “
Integration of. Jet Impingement Cooling With Direct Bonded Copper Substrates for Power Electronics Thermal Management
,”
IEEE Trans. Comp. Packag. Manuf. Technol.
,
9
(
2
), p.
9
.10.1109/TCPMT.2018.2863714
33.
Moreno
,
G.
,
Narumanchi
,
S.
,
Feng
,
X.
,
Kotecha
,
R.
, and
Bennion
,
K.
,
2020
, “
Dielectric Fluid Manifold for Double-Side Cooling
,” Provisional Patent Application No. 63/062,791.
34.
DSI Ventures
,
2020
, “
Alpha-6 Fluid
,” DSI Ventures, Tyler, TX, accessed Feb. 15, 2021, https://dsiventures.com/specialty-cooling/alpha-6-fluid/
35.
Engineered Fluids
,
2020
, “
AmpCool Dielectric Coolants
,” Engineered Fluids, Tyler, TX, accessed May 15, 2020, https://www.engineeredfluids.com/get-documents
36.
Boteler
,
L. M.
,
Niemann
,
V. A.
,
Urciuoli
,
D. P.
, and
Miner
,
S. M.
,
2017
, “
Stacked Power Module With Integrated Thermal Management
,” IEEE International Workshop on Integrated Power Packaging (
IWIPP
), Delft, The Netherlands, Apr. 5–7, pp.
1
5
.10.1109/IWIPP.2017.7936764
37.
Moreno
,
G.
,
Narumanchi
,
S.
, and
King
,
C.
,
2013
, “
Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111014
.10.1115/1.4024622
38.
Moreno
,
G.
,
Jeffers
,
J. R.
, and
Narumanchi
,
S.
,
2014
, “
Effects of Pressure and a Microporous Coating on HFC-245fa Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101502
.10.1115/1.4027966
39.
Thiagarajan
,
S. J.
,
Yang
,
R.
,
King
,
C.
, and
Narumanchi
,
S.
,
2015
, “
Bubble Dynamics and Nucleate Pool Boiling Heat Transfer on Microporous Copper Surfaces
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1297
1315
.10.1016/j.ijheatmasstransfer.2015.06.013
40.
Thiagarajan
,
S. J.
,
Narumanchi
,
S.
, and
Yang
,
R.
,
2014
, “
Effect of Flow Rate and Subcooling on Spray Heat Transfer on Microporous Copper Surfaces
,”
Int. J. Heat Mass Transfer
,
69
, pp.
493
505
.10.1016/j.ijheatmasstransfer.2013.09.033
41.
Tuma
,
P.
,
Moreno
,
G.
,
Narumanchi
,
S.
,
Bennion
,
K.
,
Brandenburg
,
S.
,
Olszewski
,
M.
, and
Burress
,
T.
,
2010
, “
Passive 2-Phase Immersion Cooling of Commercial and Developmental Insulated Gate Bipolar Transistor (IGBT) Modules
,” Presentation IMAPs Advanced Thermal Workshop (ATW), Santa Clara, CA, Sept. 28.
42.
Sakai
,
Y.
,
Ishiyama
,
H.
, and
Kikuchi
,
T.
,
2007
, “
Power Control Unit for High Power Hybrid System
,”
SAE
Paper No. 2007-01-0271.10.4271/2007-01-0271
43.
Moreno
,
G.
,
2014
, “
Two-Phase Cooling of Power Electronics: FY2014 Annual Progress Report Electric Drive Technologies Program
,” U.S. Department of Energy, Washington, DC, Report No. DOE/EE-1163.
44.
Moreno
,
G.
,
Jeffers
,
J. R.
,
Narumanchi
,
S.
, and
Bennion
,
K.
,
2014
, “
Passive Two-Phase Cooling for Automotive Power Electronics
,” Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 9–13, pp.
58
65
.10.1109/SEMI-THERM.2014.6892216
45.
Palko
,
J. W.
,
Lee
,
H.
,
Zhang
,
C.
,
Dusseault
,
T. J.
,
Maitra
,
T.
,
Won
,
Y.
,
Agonafer
,
D. D.
,
Moss
,
J.
,
Houshmand
,
F.
,
Rong
,
G.
,
Wilbur
,
J. D.
,
Rockosi
,
D.
,
Mykyta
,
I.
,
Resler
,
D.
,
Altman
,
D.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2017
, “
Extreme Two-Phase Cooling From Laser-Etched Diamond and Conformal, Template-Fabricated Microporous Copper
,”
Adv. Funct. Mater.
,
27
(
45
), p.
1703265
.10.1002/adfm.201703265
You do not currently have access to this content.