Abstract

This paper focuses on anisotropic elastic-plastic constitutive modeling of SAC (SnAgCu) solder grains because of their importance in modeling the behavior of oligocrystalline (few-grained) micron-scale solder joints that are increasingly common in heterogeneous integration. Such grain-scale anisotropic modeling approach provides more accurate assessment of the mechanical response of solder interconnects in terms of predicting different failure modes, failure sites, and variability in time-to-failure. Anisotropic plasticity is represented using Hill–Ramberg–Osgood (RO) continuum plasticity model, which utilizes Hill's anisotropic plastic potential along with a RO power-law plastic hardening flow rule. Mechanistically motivated empirical scaling factors are proposed to extrapolate the stress–strain response for different grain sizes/shapes and for different coarseness of microstructures within each grain (generated with different cooling rates). This scaling factor can therefore also capture the effects of microstructural coarsening due to isothermal aging. This goal is achieved by first conducting monotonic tensile and shear tests on monocrystalline and oligocrystalline SAC305 solder joints containing grains of various geometries and also intragranular microscale (dendritic and eutectic) structures of various coarseness. The grain structures are characterized for each tested specimen using electron backscattered diffraction (EBSD). The Hill–RO model constants and the empirical scaling factors are then estimated by matching grain-scale anisotropic elastic-plastic finite element models of each tested specimen to the measured stress–strain behavior, using an inverse-iteration process. Grain shape is seen to influence the sensitivity of the effective stress–strain curves to the applied stress state (i.e., to the orientation of the principal stress directions) relative to (i) the material principal directions and (ii) the geometric principal directions of grains with high aspect ratio. Limitations of the current results and opportunities for future improvements are discussed.

References

1.
Lau
,
J. H.
,
Li
,
M.
,
Qingqian
,
M. L.
,
Chen
,
T.
,
Xu
,
I.
,
Yong
,
Q. X.
,
Cheng
,
Z.
,
Fan
,
N.
,
Kuah
,
E.
,
Li
,
Z.
,
Tan
,
K. H.
,
Cheung
,
Y.
,
Ng
,
E.
,
Lo
,
P.
,
Kai
,
W.
,
Hao
,
J.
,
Wee
,
K. S.
,
Ran
,
J.
,
Xi
,
C.
,
Beica
,
R.
,
Lim
,
S. P.
,
Lee
,
N. C.
,
Ko
,
C.
,
Yang
,
H.
,
Chen
,
Y.
,
Tao
,
M.
,
Lo
,
J.
, and
Lee
,
R. S. W.
,
2018
, “
Fan-Out Wafer-Level Packaging for Heterogeneous Integration
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
9
), pp.
1544
1560
.10.1109/TCPMT.2018.2848649
2.
Rajmane
,
P.
,
Mirza
,
F.
,
Khan
,
H.
, and
Agonafer
,
D.
,
2015
, “
Chip Package Interaction Study to Analyze the Mechanical Integrity of a 3-D TSV Package
,”
ASME
Paper No. IPACK2015-48811.10.1115/IPACK2015-48811
3.
Darbandi
,
P.
,
Bieler
,
T.
,
Pourboghrat
,
F.
, and
Lee
,
T.
,
2013
, “
Crystal Plasticity Finite-Element Analysis of Deformation Behavior in Multiple-Grained Lead-Free Solder Joints
,”
J. Electron. Mater.
42
(
2
), pp.
201
214
.10.1007/s11664-012-2339-4
4.
Jiang
,
Q.
,
Deshpande
,
A.
, and
Dasgupta
,
A.
,
2017
, “
Is the Heterogeneous Microstructure of SnAgCu (SAC) Solders Going to Pose a Challenge for Heterogeneous Integration?
ASME
Paper No. IPACK2017-74133.10.1115/PACK2017-74133
5.
Bridgman
,
P. W.
,
1925
, “
Certain Physical Properties of Single Crystals of W, Sb, Bi, Te, Cd, Zn and Sn
,”
Proc. Am. Acad. Arts Sci.
,
60
(
6
), p.
305
.10.2307/25130058
6.
Rayne
,
J. A.
, and
Chandrasekhar
,
B. S.
,
1960
, “
Elastic Constants of β Tin From 4.2°K to 300°K
,”
Phys. Rev.
,
120
(
5
), pp.
1658
1663
.10.1103/PhysRev.120.1658
7.
Jiang
,
Q.
,
Deshpande
,
A.
, and
Dasgupta
,
A.
,
2019
, “
Elastic Behavior of Coarse Grained SnAgCu (SAC) Solder Joints Based on an Anisotropic Multi-Scale Predictive Modeling Approach
,”
J. Electron. Mater.
,
48
(
12
), pp.
8076
8088
.10.1007/s11664-019-07576-x
8.
Cuddalorepatta
,
G.
,
2009
, “
Evolution of the Microstructure and Viscoplastic Behavior of Microscale SAC305 Solder Joints as a Function of Mechanical Fatigue Damage
,”
Ph.D. dissertation
,
University of Maryland
,
College Park, MD
.https://www.proquest.com/openview/7a0e5ed795b93436e24c423edcec51c1/1?pqorigsite=gscholar&cbl=18750
9.
Deshpande
,
A.
,
Jiang
,
Q.
,
Dasgupta
,
A.
, and
Becker
,
U.
,
2022
, “
Role of Nominal Stress State on Cyclic Fatigue Durability of SAC305 Grain-Scale Solder Joints
,”
ASME. J. Electron. Packag.
,
144
(
3
), p.
031006
.10.1115/1.4051647
10.
Deshpande
,
A.
,
Jiang
,
Q.
,
Dasgupta
,
A.
, and
Becker
,
U.
,
2019
, “
Fatigue Life of Joint-Scale SAC305 Solder Specimens in Tensile and Shear Mode
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
1026
1029
.10.1109/ITHERM.2019.8757405
11.
Deshpande
,
A.
,
Kaeser
,
H.
, and
Dasgupta
,
A.
,
2019
, “
Effect of Stress State on Fatigue Characterization of SAC305 Solder Joints
,” 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Hannover, Germany, Mar.
24
27
.10.1109/EuroSimE.2019.8724547
12.
Wang
,
S.
,
Yao
,
Y.
, and
Long
,
X.
,
2017
, “
Size Effect on Microstructure and Tensile Properties of Sn3.0Ag0.5Cu Solder Joints
,”
J. Mater. Sci.: Mater. Electron.
,
28
(
23
), pp.
17682
17692
.10.1007/s10854-017-7706-8
13.
Matin
,
M. A.
,
Vellinga
,
W. P.
, and
Geers
,
M. G. D.
,
2007
, “
Thermomechanical Fatigue Damage Evolution in SAC Solder Joints
,”
Mater. Sci. Eng.: A
,
445–446
, pp.
73
85
.10.1016/j.msea.2006.09.037
14.
Park
,
S.
,
Dhakal
,
R.
,
Lehman
,
L.
, and
Cotts
,
E.
,
2007
, “
Measurement of Deformations in Snagcu Solder Interconnects Under In Situ Thermal Loading
,”
Acta Mater.
,
55
(
9
), pp.
3253
3260
.10.1016/j.actamat.2007.01.028
15.
Park
,
S.
,
Dhakal
,
R.
, and
Gao
,
J.
,
2008
, “
Three-Dimensional Finite Element Analysis of Multiple-Grained Lead-Free Solder Interconnects
,”
J. Electron. Mater.
,
37
(
8
), pp.
1139
1147
.10.1007/s11664-008-0481-9
16.
Arfaei
,
B.
,
Xing
,
Y.
,
Woods
,
J.
,
Wolcott
,
J.
,
Tumne
,
P.
,
Borgesen
,
P.
, and
Cotts
,
E.
,
2008
, “
The Effect of Sn Grain Number and Orientation on the Shear Fatigue Life of SnAgCu Solder Joints
,”
58th Electronic Components and Technology Conference
, Lake Buena Vista, FL, May 27–30, pp.
459
465
.10.1109/ECTC.2008.4550012
17.
Bieler
,
T. R.
,
Jiang
,
H.
,
Lehman
,
L. P.
,
Kirkpatrick
,
T.
, and
Cotts
,
E. J.
,
2006
, “
Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-Free Solder Joints
,”
56th Electronic Components and Technology Conference
, San Diego, CA, May 30–June 2, pp.
1462
1467
.10.1109/ECTC.2006.1645849
18.
Xu
,
H.
,
Lee
,
T.
, and
Kim
,
C.
,
2013
, “
Grain Structure Evolution and Its Impact on the Fatigue Reliability of Lead-Free Solder Joints in BGA Packaging Assembly
,”
IEEE 63rd Electronic Components and Technology Conference
, Las Vegas, NV, May 28–31, pp.
740
747
.10.1109/ECTC.2013.6575655
19.
Chen
,
H.
,
Mueller
,
M.
,
Mattila
,
T. T.
,
Li
,
J.
,
Liu
,
X.
,
Wolter
,
K.-J.
, and
Paulasto-Kröckel
,
M.
,
2011
, “
Localized Recrystallization and Cracking of Lead-Free Solder Interconnections Under Thermal Cycling
,”
J. Mater. Res.
,
26
(
16
), pp.
2103
2116
.10.1557/jmr.2011.197
20.
Cuddalorepatta
,
G.
, and
Dasgupta
,
A.
,
2010
, “
Multi-Scale Modeling of the Viscoplastic Response of as-Fabricated Microscale Pb-Free Sn3.0Ag0.5Cu Solder Interconnects
,”
Acta Mater.
,
58
(
18
), pp.
5989
6001
.10.1016/j.actamat.2010.07.016
21.
Cuddalorepatta
,
G.
,
Williams
,
M.
, and
Dasgupta
,
A.
,
2010
, “
Viscoplastic Creep Response and Microstructure of as-Fabricated Microscale Sn-3.0Ag-0.5Cu Solder Interconnects
,”
J. Electron. Mater.
,
39
(
10
), pp.
2292
2309
.10.1007/s11664-010-1296-z
22.
Mukherjee
,
S.
,
Zhou
,
B.
,
Dasgupta
,
A.
, and
Bieler
,
T. R.
, March
2016
, “
Multiscale Modeling of the Anisotropic Transient Creep Response of Heterogeneous Single Crystal SnAgCu Solder
,”
Int. J. Plasticity
,
78
, pp.
1
25
.10.1016/j.ijplas.2015.10.011
23.
Mukherjee
,
S.
,
Zhou
,
B.
,
Dasgupta
,
A.
, and
Bieler
,
T. R.
,
2015
, “
Mechanistic Modeling of the Anisotropic Steady State Creep Response of SnAgCu Single Crystal
,”
ASME
Paper No. IPACK2015-48710.10.1115/IPACK2015-48710
24.
Jiang
,
Q.
, and
Dasgupta
,
A.
,
2021
, “
Anisotropic Steady-State Creep Behavior of Single-Crystal Β-Sn: A Continuum Constitutive Model Based on Crystal Viscoplasticity
,”
Int. J. Plast.
,
140
, p.
102975
.10.1016/j.ijplas.2021.102975
25.
Jiang
,
Q.
,
Deshpande
,
A.
, and
Dasgupta
,
A.
,
2022
, “
Multi-Scale Crystal Viscoplasticity Approach for Estimating Anisotropic Steady-State Creep Properties of Single-Crystal SnAgCu Alloys
,”
Int. J. Plast.
,
153
, p.
103271
.10.1016/j.ijplas.2022.103271
26.
Jiang
,
Q.
,
Deshpande
,
A. N.
, and
Dasgupta
,
A.
,
2021
, “
Grain-Scale Anisotropic Analysis of Steady-State Creep in Oligocrystalline SAC Solder Joints
,”
Materials
,
14
(
20
), p.
5973
.10.3390/ma14205973
27.
Mueller
,
M.
,
Wiese
,
S.
,
Roellig
,
M.
, and
Wolter
,
K. J.
,
2007
, “
Effect of Composition and Cooling Rate on the Microstructure of SnAgCu-Solder Joints
,”
Proceedings 57th Electronic Components and Technology Conference
, Sparks, NV, May 29–June 1, pp.
1579
1588
.10.1109/ECTC.2007.374006
28.
Wei
,
G.
, and
Wang
,
L.
,
2012
, “
Effects of Cooling Rate on Microstructure and Microhardness of Lead-Free Sn-3.0Ag-0.5Cu Solder
,”
13th International Conference on Electronic Packaging Technology & High-Density Packaging
, Guilin, China, Aug. 13–16, pp.
453
456
.10.1109/ICEPT-HDP.2012.6474657
29.
Lee
,
H. T.
, and
Huang
,
K. C.
,
2016
, “
Effects of Cooling Rate on the Microstructure and Morphology of Sn-3.0Ag-0.5Cu Solder
,”
J. Electron. Mater.
,
45
(
1
), pp.
182
190
.10.1007/s11664-015-4189-3
30.
Choubey
,
A.
,
Yu
,
H.
,
Osterman
,
M.
,
Pecht
,
M.
,
Yun
,
F.
,
Yonghong
,
L.
, and
Ming
,
X.
,
2008
, “
Intermetallics Characterization of Lead-Free Solder Joints Under Isothermal Aging
,”
J. Electron. Mater.
,
37
(
8
), pp.
1130
1138
.10.1007/s11664-008-0466-8
31.
Mutuku
,
F.
,
Arfaei
,
B.
, and
Cotts
,
E. J.
,
2017
, “
The Influence of Processing on Strengthening Mechanisms in Pb-Free Solder Joints
,”
J. Electro. Mater.
,
46
(
4
), pp.
2067
2079
.10.1007/s11664-016-5130-0
32.
Chauhan
,
P.
,
Mukherjee
,
S.
,
Osterman
,
M.
,
Dasgupta
,
A.
, and
Pecht
,
M.
,
2013
, “
Effect of Isothermal Aging on Microstructure and Creep Properties of SAC305 Solder: A Micromechanics Approach
,”
ASME
Paper No. IPACK2013-73164.10.1115/IPACK2013-73164
33.
Basit
,
M. M.
,
Motalab
,
M.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2014
, “
The Effects of Aging on the Anand Viscoplastic Constitutive Model for SAC305 Solder
,” Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
112
126
.10.1109/ITHERM.2014.6892272
34.
Fu
,
N.
,
Suhling
,
J. C.
,
Hamasha
,
S.
, and
Lall
,
P.
,
2017
, “
Long Term Isothermal Aging Effects on the Cyclic Stress-Strain Behavior of Sn-Ag-Cu Solders
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
1337
1345
.10.1109/ITHERM.2017.7992637
35.
Fu
,
N.
,
Wu
,
J.
,
Ahmed
,
S.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2017
, “
Investigation of Aging Induced Evolution of the Microstructure of SAC305 Lead Free Solder
,”
ASME
Paper No. IPACK2017-74266.10.1115/IPACK2017-74266
36.
Wu
,
J.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2019
, “
Microstructural Evolution in SAC+X Solders Subjected to Aging
,” IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
1087
1098
.10.1109/ECTC.2019.00170
37.
Haswell
,
P.
,
2001
, “
Durability Assessment and Microstructural Observations of Selected Solder Alloys
,”
Ph.D. dissertation
,
University of Maryland
,
College Park, MD
.https://www.proquest.com/openview/1de6ce3a5900450e4f68cbe861bfe347/1?pqorigsite=gscholar&cbl=18750&diss=y
38.
Deshpande
,
A.
,
Jiang
,
Q.
, and
Dasgupta
,
A.
,
2018
, “
A Joint-Scale Test Specimen for Tensile Properties of Solder Alloys
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
San Diego, CA
, May 29–June 1, pp.
1309
1313
.10.1109/ITHERM.2018.8419581
39.
Wu
,
B.
,
2018
, “
Advancement of Moiré Interferometry for Rate-Dependent Material Behavior and Micromechanical Deformations
,”
Ph.D. dissertation
,
University of Maryland
,
College Park, MD
.https://www.proquest.com/openview/966234b45e5e177b6b24ffacef41c47a/1?pqorigsite=gscholar&cbl=18750
40.
Bunge
,
H. J.
,
2013
,
Texture Analysis in Materials Science: Mathematical Methods
,
Elsevier/Butterworths
,
London, UK
.
41.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
The Clarendon Press
,
Oxford, UK
.
42.
Christensen
,
R. M.
,
2005
,
Mechanics of Composite Materials
,
Dover Publications
,
Mineola, NY
.
43.
Kariya
,
Y.
,
Tajima
,
S.
, and
Yamada
,
S.
,
2012
, “
Influence of Crystallographic Orientation on Fatigue Reliability of Β-Sn and Β-Sn Micro-Joint
,”
Mater. Trans.
,
53
(
12
), pp.
2067
2071
.10.2320/matertrans.MB201204
44.
Sasaki
,
T.
,
Yanase
,
A.
,
Okumura
,
D.
,
Kariya
,
Y.
,
Koganemaru
,
M.
, and
Ikeda
,
T.
,
2019
, “
Measurements and FEM Analyses of Strain Distribution in Small Sn Specimens With Few Crystal Grains
,”
Mater. Trans.
,
60
(
6
), pp.
868
875
.10.2320/matertrans.MH201808
45.
Dieter
,
G. E.
,
1986
,
Mechanical Metallurgy
, 3rd ed.,
McGraw-Hill
, New York.
You do not currently have access to this content.