Abstract

Aerosol-Jet Printing (AJP) technology, applied to the manufacturing of printed hybrid electronics (PHE) devices, has the capability to fabricate highly complex structures with resolution in the tens-of-microns scale, creating new possibilities for the fabrication of electronic devices and assemblies. The widespread use of AJP in fabricating PHE and package-level electronics necessitates a thorough assessment of not only the performance of AJP printed electronics but also their reliability under different kinds of life-cycle operational and environmental stresses. One important hindrance to the reliability and long-term performance of such AJP electronics is electrochemical migration (ECM). ECM is an important failure mechanism in electronics under temperature and humidity conditions because it can lead to conductive dendritic growth, which can cause dielectric breakdown, leakage current, and unexpected short circuits. In this paper, the ECM propensity in conductive traces printed with AJP process, using silver-nanoparticle (AgNP) based inks, was experimentally studied using temperature-humidity-bias (THB) testing of printed test coupons. Conductive dendritic growth with complex morphologies was observed under different levels of temperature, humidity, and electric bias in the THB experiments. Weibull statistics are used to quantify the failure data, along with the corresponding confidence bounds to capture the uncertainty of the Weibull distribution. A nonmonotonic relationship between time-to-failure and electric field strength was noticed. An empirical acceleration model for ECM is proposed, by combining the classical Peck's model with a quadratic polynomial dependence on electric field strength. This model provides good estimate of acceleration factors for use conditions where the temperature, humidity, and electrical field are within the tested range, but should be extrapolated with care beyond the tested range.

References

1.
Hines
,
D. R.
,
Gu
,
Y.
,
Martin
,
A. A.
,
Li
,
P.
,
Fleischer
,
J.
,
Clough-Paez
,
A.
,
Stackhouse
,
G.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2021
, “
Considerations of Aerosol-Jet Printing for the Fabrication of Printed Hybrid Electronic Circuits
,”
Addit. Manuf.
,
47
, p.
102325
.10.1016/j.addma.2021.102325
2.
Gupta
,
A. A.
,
Bolduc
,
A.
,
Cloutier
,
S. G.
, and
Izquierdo
,
R.
,
2016
, “
Aerosol Jet Printing for Printed Electronics Rapid Prototyping
,”
IEEE International Symposium on Circuits and Systems (ISCAS)
, Montreal, QC, Canada, May 22–25, pp.
866
869
.10.1109/ISCAS.2016.7527378
3.
Brenneman
,
J.
,
Tansel
,
D. Z.
,
Fedder
,
G. K.
, and
Panat
,
R.
,
2022
, “
High-Conductivity Crack-Free 3D Electrical Interconnects Directly Printed on Soft PDMS Substrates
,”
Adv. Mater. Technol.
, 7(12), p.
2200396
.10.1002/admt.202200396
4.
Huang
,
Q.
, and
Zhu
,
Y.
,
2019
, “
Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications
,”
Adv. Mater. Technol.
,
4
(
5
), p.
1800546
.10.1002/admt.201800546
5.
Park
,
S.
,
Kim
,
H.
,
Kim
,
J. H.
, and
Yeo
,
W. H.
,
2020
, “
Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics
,”
Materials (Basel)
,
13
(
16
), p.
3587
.10.3390/ma13163587
6.
Zarek
,
M.
,
Layani
,
M.
,
Cooperstein
,
I.
,
Sachyani
,
E.
,
Cohn
,
D.
, and
Magdassi
,
S.
,
2016
, “
3D Printing of Shape Memory Polymers for Flexible Electronic Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4449
4454
.10.1002/adma.201503132
7.
Zhao
,
B.
,
Wang
,
Y.
,
Sinha
,
S.
,
Chen
,
C.
,
Liu
,
D.
,
Dasgupta
,
A.
,
Hu
,
L.
, and
Das
,
S.
,
2019
, “
Shape-Driven Arrest of Coffee Stain Effect Drives the Fabrication of Carbon-Nanotube-Graphene-Oxide Inks for Printing Embedded Structures and Temperature Sensors
,”
Nanoscale
,
11
(
48
), pp.
23402
23415
.10.1039/C9NR08450A
8.
Zhao
,
B.
,
Sivasankar
,
V. S.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2021
, “
Ultrathin and Ultrasensitive Printed Carbon Nanotube-Based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities
,”
ACS Appl. Mater. Interfaces
,
13
(
8
), pp.
10257
10270
.10.1021/acsami.0c18095
9.
Chen
,
G.
,
Gu
,
Y.
,
Tsang
,
H.
,
Hines
,
D. R.
, and
Das
,
S.
,
2018
, “
The Effect of Droplet Sizes on Overspray in Aerosol-Jet Printing
,”
Adv. Eng. Mater.
,
20
(
8
), p.
1701084
.10.1002/adem.201701084
10.
Salary
,
R.
,
Lombardi
,
J. P.
,
Samie Tootooni
,
M.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.10.1115/1.4034591
11.
Salary
,
R.
,
Lombardi
,
J. P.
,
Rao
,
P. K.
, and
Poliks
,
M. D
,
2017
, “
Online Monitoring of Functional Electrical Properties in Aerosol Jet Printing Additive Manufacturing Process Using Shape-From-Shading Image Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101010
.10.1115/1.4036660
12.
Sivasankar
,
V. S.
,
Sachar
,
H. S.
,
Sinha
,
S.
,
Hines
,
D. R.
, and
Das
,
S.
,
2020
, “
3D Printed Microdroplet Curing: Unravelling the Physics of on-Spot Photopolymerization
,”
ACS Appl. Polym. Mater.
,
2
(
2
), pp.
966
976
.10.1021/acsapm.9b01181
13.
Dalal
,
N.
,
Gu
,
Y.
,
Chen
,
G.
,
Hines
,
D. R.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2020
, “
Effect of Gas Flow Rates on Quality of Aerosol Jet Printed Traces With Nanoparticle Conducting Ink
,”
ASME J. Electron. Packag.
,
142
(
1
), p.
011012
.10.1115/1.4044960
14.
Secor
,
E. B.
,
2018
, “
Principles of Aerosol Jet Printing
,”
Flex. Print. Electron.
,
3
(
3
), p.
035002
.10.1088/2058-8585/aace28
15.
Wilkinson
,
N. J.
,
Smith
,
M. A. A.
,
Kay
,
R. W.
, and
Harris
,
R. A.
,
2019
, “
A Review of Aerosol Jet Printing—A Non-Traditional Hybrid Process for Micro-Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4599
4619
.10.1007/s00170-019-03438-2
16.
Hoey
,
J. M.
,
Lutfurakhmanov
,
A.
,
Schulz
,
D. L.
, and
Akhatov
,
I. S.
,
2012
, “
A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics
,”
J. Nanotechnol.
,
2012
, pp.
1
22
.10.1155/2012/324380
17.
Deshpande
,
A.
,
Jiang
,
Q.
,
Dasgupta
,
A.
, and
Becker
,
U
,
2021
, “
Role of Nominal Stress State on Cyclic Fatigue Durability of SAC305 Grain-Scale Solder Joints
,”
ASME J. Electron. Packag.
,
144
(
3
), p.
031006
.10.1115/1.4051647
18.
Olatunji
,
I.
,
Deshpande
,
A.
,
Bascolo
,
M.
,
Dasgupta
,
A.
,
Becker
,
U.
, and
Jokai
,
G.
,
2022
, “
Durability of Copper Traces in Ball Grid Array (BGA) Assemblies Under Sequential Harmonic Vibration and Temperature Cycling
,” 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), St Julian, Malta, Apr. 25–27, pp.
1
5
.10.1109/EuroSimE54907.2022.9758863
19.
Deshpande
,
A.
,
Jiang
,
Q.
, and
Dasgupta
,
A.
,
2021
, “
Variability of Mechanical Cycling Durability of SAC305 Solder Joints: Model-Based Assessment Using Grain-Scale Modeling of Cyclic Shear Loading
,”
22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)
, St Julian, Malta, Apr. 19–21, pp.
1
4
.10.1109/EuroSimE52062.2021.9410828
20.
Meng
,
J.
, and
Dasgupta
,
A
,
2017
, “
Influence of Secondary Impact on Printed Wiring Assemblies—Part II: Competing Failure Modes in Surface Mount Components
,”
ASME J. Electron. Packag.
,
139
(
3
), p.
031001
.10.1115/1.4036187
21.
He
,
X.
,
Azarian
,
M.
, and
Pecht
,
M.
,
2014
, “
Analysis of the Kinetics of Electrochemical Migration on Printed Circuit Boards Using Nernst-Planck Transport Equation
,”
Electrochimica Acta
,
142
, pp.
1
10
.10.1016/j.electacta.2014.06.041
22.
He
,
X.
,
2014
, “
Evaluation and Modeling of Electrochemical Migration on Printed Circuit Boards
,”
Doctoral dissertation
,
University of Maryland
,
College Park, Ann Arbor, MI
.https://www.proquest.com/openview/ac392230a69dc4db6eed614e4f6aa1dd/1?pqorigsite=gscholar&cbl=18750
23.
Zhao
,
B.
,
Riso
,
C.
,
Leslie
,
D.
,
Dasgupta
,
A.
,
Das
,
S.
,
Fleischer
,
J.
, and
Hines
,
D.
,
2021
, “
Temperature Cycling Study of Aerosol-Jet Printed Conductive Silver Traces in Printed Electronics
,”
ASME
Paper No. IPACK2021-73197. 10.1115/IPACK2021-73197
24.
Tilford
,
T.
,
Stoyanov
,
S.
,
Braun
,
J.
,
Janhsen
,
J. C.
,
Burgard
,
M.
,
Birch
,
R.
, and
Bailey
,
C.
,
2018
, “
Design, Manufacture and Test for Reliable 3D Printed Electronics Packaging
,”
Microelectron. Reliab.
,
85
, pp.
109
117
.10.1016/j.microrel.2018.04.008
25.
Yang
,
S.
, and
Christou
,
A.
,
2007
, “
Failure Model for Silver Electrochemical Migration
,”
IEEE Trans. Device Mater. Reliab.
,
7
(
1
), pp.
188
196
.10.1109/TDMR.2007.891531
26.
Herzberger
,
J. L.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2015
, “
Multiphysics Study of Electrochemical Migration in Ceramic Capacitors
,”
16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
, Budapest, Hungary, Apr. 19–22, pp.
1
6
.10.1109/EuroSimE.2015.7103154
27.
IPC 9201A, 2007, Surface Insulation Resistance Handbook, IPC, Bannockburn, IL.
28.
Ladani
,
L. J.
,
Dasgupta
,
A.
,
Cardoso
,
I.
, and
Monlevade
,
E.
,
2008
, “
Effect of Selected Process Parameters on Durability and Defects in Surface-Mount Assemblies for Portable Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
,
31
(
1
), pp.
51
60
.10.1109/TEPM.2007.914222
29.
Zhong
,
X.
,
Zhang
,
G.
,
Qiu
,
Y.
,
Chen
,
Z.
, and
Guo
,
X.
,
2013
, “
Electrochemical Migration of Tin in Thin Electrolyte Layer Containing Chloride Ions
,”
Corros. Sci.
,
74
, pp.
71
82
.10.1016/j.corsci.2013.04.015
30.
Gharaibeh
,
A.
,
Illés
,
B.
,
Géczy
,
A.
, and
Medgyes
,
B.
,
2020
, “
Numerical Models of the Electrochemical Migration: A Short Review
,” IEEE 26th International Symposium for Design and Technology in Electronic Packaging (
SIITME
), Pitesti, Romania, Oct. 21–24, pp.
178
183
.10.1109/SIITME50350.2020.9292229
31.
Peck
,
D. S.
,
1986
, “Comprehensive Model for Humidity Testing Correlation,”
24th International Reliability Physics Symposium
, Anaheim, CA, Apr. 1–3, pp.
44
50
.10.1109/IRP S.1986.362110
32.
Peck
,
D. S.
, and
Hallberg
,
O.
,
1991
, “Recent Humidity Accelerations, a Base for Testing Standards,”
Quality Reliab. Eng. Int.
, 7(3), pp.
169
180
.10.1002/qre.4680070308
33.
Zhou
,
Y.
,
Yang
,
L.
,
Li
,
Y.
, and
Lu
,
W.
,
2019
, “
Exploring the Data-Driven Modeling Methods for Electrochemical Migration Failure of Printed Circuit Board
,”
Prognostics and System Health Management Conference (PHM-Paris)
, Paris, France, May 2–5, pp.
100
105
.10.1109/PHM-Paris.2019.00025
34.
Zhou
,
Y.
,
Li
,
Y.
,
Chen
,
Y.
, and
Zhu
,
M.
,
2019
, “
Life Model of the Electrochemical Migration Failure of Printed Circuit Boards Under NaCl Solution
,”
IEEE Trans. Device Mater. Reliab.
,
19
(
4
), pp.
622
629
.10.1109/TDMR.2019.2938010
35.
Xie
,
C.
,
Tang
,
X.
,
Chen
,
J.
,
Song
,
B.
,
Jin
,
J.
, and
Zhang
,
H.
, March
2014
, “
Reliability Analysis and Accelerated Statistical Model of CNC PCB for Electrochemical Migration
,”
IEEE Trans. Device Mater. Reliab.
,
14
(
1
), pp.
90
98
.10.1109/TDMR.2013.2289297
36.
Yang
,
S.
,
Wu
,
J.
, and
Christou
,
A.
,
2006
, “
Initial Stage of Silver Electrochemical Migration Degradation
,”
Microelectron. Reliab.
,
46
(
9–11
), pp.
1915
1921
.10.1016/j.microrel.2006.07.080
You do not currently have access to this content.