A modified version of the computational fluid dynamics code KIVA-II was used to model the transient behavior of buoyant turbulent diffusion flames burning in still air. Besides extensions to the range of permitted boundary conditions and the addition of buoyancy terms to the turbulence model, KIVA-II was augmented by a version of the coherent flame-sheet model, Tesner’s soot generation model, Magnussen’s soot oxidation model, and an implementation of the discrete transfer radiation model that included both banded and continuum radiation. The model captured many of the features of buoyant turbulent flames. Its predictions supported experimental observations regarding the presence and frequency of large-scale pulsations, and regarding axial distributions of temperature, velocity, and chemical species concentrations. The radial structure of the flame was less well represented. The axial radiative heat flux distribution from the flame highlighted deficiencies in the soot generation model, suggesting that a model of soot particle growth was required.

1.
Ahmed, T., Plee, S. L., and Myers, J. P., 1981, “Computation of Nitric Oxide and Soot Emissions from Steady Turbulent Spray and Jet Flames,” EN-231, General Motors Research Laboratories, Warren, MI.
2.
Amsden, A. A., Butler, T. D., O’Rourke, P. J., and Ramshaw, J. D., 1985a, “KIVA: A Comprehensive Model for 2D and 3D Engine Simulations,” SAE Paper 850554.
3.
Amsden, A. A., Ramshaw, J. D., O’Rourke, P. J., and Dakowicz, J. K., 1985b, “KIVA: A Computer Program for Two and Three-Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays,” LA-10245-MS, Los Alamos National Laboratory, Los Alamos, NM.
4.
Amsden, A. A., Butler, T. D., and O’Rourke, P. J., 1987, “The KIVA-II Computer Program for Transient Multi-dimensional Chemically Reactive Flows with Sprays,” SAE Paper 872072.
5.
Amsden, A. A., O’Rourke, P. J., and Butler, T. D., 1989, “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” LA-11560-MS, Los Alamos National Laboratory, Los Alamos, NM.
6.
Beeri
Z.
,
Blunsdon
C. A.
,
Malalasekera
W. M. G.
, and
Dent
J. C.
,
1996
, “
Comprehensive Modeling of Turbulent Flames With the Coherent Flame-Sheet Model—Part II: High-Momentum Reactive Jets
,”
ASME JOURNAL OF ENERGY RESOURCES TECHNOLOGY
, Vol.
118
, Mar., pp.
72
76
.
7.
Blunsdon, C. A., Malalasekera, W. M. G., and Dent, J. C., 1992, “Application of the Discrete Transfer Model of Thermal Radiation in a CFD Simulation of Diesel Engine Combustion and Heat Transfer,” SAE International Fuels and Lubricants Meeting and Exposition, SAE Paper 922 305.
8.
Cetegen
B. M.
, and
Ahmed
T. A.
,
1993
, “
Experiments on the Periodic Instability of Buoyant Plumes and Pool Fires
,”
Combustion and Flame
, Vol.
93
, pp.
157
184
.
9.
Charalampopoulos
T. T.
, and
Chang
H.
,
1991
, “
Agglomerate Parameters and Fractal Dimension of Soot Using Light Scattering—Effects on Surface Growth
,”
Combustion and Flame
, Vol.
87
, pp.
89
99
.
10.
Cheng, W. K., 1983, “Calculation of Turbulent Diffusion Flame Using the Coherent Flame Sheet Model,” AIAA-83-1322, AIAA/SAE/ASME 19th Joint Propulsion Conference.
11.
Cheng
W. K.
,
1984
, “
Calculation of Turbulent Diffusion Flame Using the Coherent Flame Sheet Model
,”
AIAA Journal
, Vol.
22
, pp.
1694
1696
.
12.
Cheng, W. K., Lai, M. C., and Chue, T. H., 1991, “Multi-dimensional Modelling of Gas Turbine Combustion Using a Flame Sheet Model in KIVA II,” AIAA-91-0414.
13.
Cox
G.
, and
Kumar
S.
,
1987
, “
Field Modelling of Fire in Forced Ventilated Enclosures
,”
Combustion Science and Technology
, Vol.
52
, pp.
7
23
.
14.
Darabiha, N., Giovangigli, V., Trouve, A., Candel, S. M., and Esposito, E., 1989, “Coherent Flame Description of Turbulent Premixed Ducted Flames,” Turbulent Reactive Flows, eds., R. Borghi and S. N. B. Murthy, Lecture Notes in Engineering, Vol. 40, Springer-Verlag.
15.
Gengembre
E.
,
Cambray
P.
,
Karmed
D.
, and
Bellet
J. C.
,
1984
, “
Turbulent Diffusion Flames with Large Buoyancy Effects
,”
Combustion Science and Technology
, Vol.
41
, pp.
55
67
.
16.
Hottel, H. C., and Sarofim, A. F., 1967, Radiative Transfer, McGraw Hill, New York, NY.
17.
Kent
J. H.
,
1987
, “
Turbulent Diffusion Flame Sooting—Relationship to Smoke-Point Tests
,”
Combustion and Flame
, Vol.
67
, pp.
223
233
.
18.
Lockwood
F. C.
,
1977
, “
The Influence of Turbulence/Chemical Kinetics Interaction on CO Formation
,”
Combustion Science and Technology
, Vol.
17
, pp.
105
107
.
19.
Lockwood, F. C., and Shah, N. G., 1981, “A New Radiation Solution Method For Incorporation in General Combustion Prediction Procedures,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1405–1413.
20.
Magnussen, B. F., and Hjertager, B. H., 1976, “On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion,” Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 719–727.
21.
Malalasekera, W. M. G., 1988, “Mathematical Modelling of Fires and Related Processes,” Ph.D. thesis, Imperial College, London, U.K.
22.
Marble, F. E., and Broadwell, J. E., 1977, “The Coherent Flame Model for Turbulent Chemical Reactions,” Project SQUID Technical Report TRW-9-PU.
23.
Pergament
H. S.
, and
Fishburne
E. S.
,
1978
, “
Influence of Buoyancy on Turbulent Hydrogen/Air Diffusion Flames
,”
Combustion Science and Technology
, Vol.
18
, pp.
127
137
.
24.
Pivovarov
M. A.
,
Zhang
H.
,
Ramaker
D. E.
,
Tatem
P. A.
, and
Williams
F. W.
,
1993
, “
Similarity Solutions in Buoyancy-Controlled Turbulent Diffusion Flames Modeling (Turbulent Buoyant Diffusion Flame Modeling)
,”
Combustion and Flame
, Vol.
92
, pp.
308
319
.
25.
Rouse
H.
,
Yih
C. S.
, and
Humphreys
H. W.
,
1952
,
Tellus
, Vol.
4
, pp.
201
210
.
26.
Sivathanu, Y. R., 1990, “Soot and Radiation Properties of Buoyant Turbulent Diffusion Flames,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
27.
Sivathanu
Y. R.
, and
Faeth
G. M.
,
1990
a, “
Soot Volume Fractions in the Overfire Region of Turbulent Diffusion Flames
,”
Combustion and Flame
, Vol.
81
, pp.
133
149
.
28.
Sivathanu
Y. R.
, and
Faeth
G. M.
,
1990
b, “
Temperature/Soot Volume Fraction
,”
Combustion and flame
, Vol.
81
, pp.
150
165
.
29.
Souil
J. M.
,
Joulain
P.
, and
Gengembre
E.
,
1984
, “
Experimental and Theoretical Study of Thermal Radiation from Turbulent Diffusion Flames to Vertical Target Surfaces
,”
Combustion Science and Technology
, Vol.
41
, pp.
69
81
.
30.
Tesner
P. A.
,
Snegiriova
T. D.
, and
Knorre
V. G.
,
1971
, “
Kinetics of Dispersed Carbon Formation
,”
Combustion and Flame
, Vol.
17
, pp.
253
260
.
31.
Truelove, J. S., 1976, “A Mixed Grey Model for Flame Radiation,” HL76/3448, AERE, Harwell.
32.
Vachon
M.
,
Cambray
P.
,
Maciaszek
T.
, and
Bellet
J. C.
,
1986
, “
Temperature and Velocity Fluctuation Measurements in a Diffusion Flame with Large Buoyancy Effects
,”
Combustion Science and Technology
, Vol.
48
, pp.
223
240
.
33.
Wagner, H. Gg., 1981, “Soot Formation—An Overview,” Particulate Carbon: Formation During Combustion, eds., D. C. Siegla and G. W. Smith, Plenum Press, London, U.K., pp. 1–28.
This content is only available via PDF.
You do not currently have access to this content.