Spectroscopic measurements of flames are amongst the most important analytical diagnostic techniques that allow one to improve thermal and energy efficiency of industrial furnaces. A chemical seeding laser-induced plasma spectroscopy (CS-LIPS) was successfully developed and applied for mixing analysis of a methane–air diffusion flame. The results obtained showed that sensitivity of this system was much improved using silica rod as the target material in place of the tungsten material used in our previous studies. Profiling of Mg spectral emission and mixing in the flame was made more clearly with the introduction of magnesium aerosols as a tracer into the combustion air flow.

References

1.
Kuprianov
,
V. I.
,
2005
, “
Applications of a Cost-Based Method of Excess Air Optimization for the Improvement of Thermal Efficiency and Environmental Performance of Steam Boilers
,”
Renewable Sustainable Energy Rev.
,
9
, pp.
474
498
.10.1016/j.rser.2004.05.006
2.
Hasegawa
,
T.
,
Mochida
,
S.
, and
Gupta
,
A. K.
,
2002
, “
Development of Advanced Industrial Furnace Using Highly Preheated Combustion Air
,”
J. Propul. Power
,
18
(
2
), pp.
233
239
.10.2514/2.5943
3.
Kouprianov
,
V. I.
, and
Tanetsakunvatana
,
V.
,
2003
, “
Optimization of Excess Air for the Improvement of Environmental Performance for a 150 MW Boiler Fired With Thai Lignite
,”
Appl. Energy
,
74
(
3/4
), pp.
445
453
.10.1016/S0306-2619(02)00199-X
4.
Romero
,
C.
,
Li
,
X.
,
Keyvan
,
S.
, and
Rossow
,
R.
,
2005
, “
Spectrometer-Based Combustion Monitoring for Flame Stoichiometry and Temperature Control
,”
Appl. Therm. Eng.
,
25
, pp.
659
676
.10.1016/j.applthermaleng.2004.07.020
5.
Baker
,
M. R.
, and
Vallee
,
B. L.
,
1959
, “
Theory of Spectral Excitation in Flames as Function of Sample Flow
,”
Anal. Chem.
,
31
(
12
), pp.
2036
2039
.10.1021/ac60156a048
6.
Majd
,
A. E.
,
Arabanian
,
A. S.
,
Massudi
,
R.
, and
Nazeri
,
M.
,
2011
, “
Spatially Resolved Laser-Induced Breakdown Spectroscopy in Methane–Air Diffusion Flames
,”
Appl. Spectrosc.
,
65
, pp.
36
42
.10.1366/10-05863
7.
Zhang
,
S.
,
Yu
,
X.
,
Li
,
F.
,
Kang
,
G.
,
Chen
,
L.
, and
Zhang
,
X.
,
2012
, “
Laser Induced Break-Down Spectroscopy for Local Equivalence Ratio Measurement of Kerosene/Air Mixture at Elevated Pressure
,”
Opt. Lasers Eng.
,
50
, pp.
877
882
.10.1016/j.optlaseng.2012.01.004
8.
Itoh
,
S.
,
Shinoda
,
M.
,
Kitagawa
,
K.
,
Arai
,
N.
,
Lee
,
Y. I.
,
Zhao
,
D.
, and
Yamashita
,
H.
,
2001
, “
Spatially Resolved Elemental Analysis of a Hydrogen–Air Diffusion Flame by Laser-Induced Plasma Spectroscopy (LIPS)
,”
Microchem. J.
,
70
, pp.
143
152
.10.1016/S0026-265X(01)00107-2
9.
Kitagawa
,
K.
,
Taki
,
H.
, and
Arai
,
N.
,
2002
, “
Profiling of Elemental Composition in a Methane–Air Premixed Flame by Laser-Induced Plasma Spectroscopy (LIPS)
,”
Energy Convers. Eng. Conf.
,
37
, pp.
382
388
.
10.
Shen
,
Q.
,
Miyata
,
Y.
,
Morita
,
S.
,
Baba
,
Y.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2013
, “
Visualization of Two-Dimensional Excitation Temperatures in CH4/N2/Ar Plasmas for Preparation of Carbonaceous Materials
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034501
.10.1115/1.4023744
11.
Oyama
,
H.
,
Kayahana
,
J.
,
Yatsu
,
S.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2014
, “
Time-Resolved 2D Temperature Measurement From Acetylene-Oxygen Flame Using Chemical Seeding Spectrocamera
,”
ASME J. Resour. Technol.
,
136
(
1
), p.
011101
.10.1115/1.4024916
12.
Desmira
,
N.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2014
, “
OH and NO Distribution in Mixture of Waste Rice Bran and Octanol Oil Flames
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
014501
.10.1115/1.4024860
13.
Askari
,
O.
,
Metghalchi
,
M.
,
Moghaddas
,
A.
,
Hannani
,
S. K.
, and
Ebrahimi
,
R.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion Characteristics of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.10.1115/1.4007911
14.
Janbozorgi
,
M.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2013
, “
Principle of Detailed Balance and the Second Law of Thermodynamics in Chemical Kinetics
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041901
.10.1115/1.4024221
15.
Kodama
,
K.
, and
Kitagawa
,
K.
,
2008
, “
Spectrochemical Analysis in Flames
,”
J. Japan Spectroscopic Society
,
57
(
2
), pp.
69
80
.10.5111/bunkou.57.69
You do not currently have access to this content.