The analytical model of Carey is extended and clarified for modeling Tesla turbine performance. The extended model retains differentiability, making it useful for rapid evaluation of engineering design decisions. Several clarifications are provided including a quantitative limitation on the model’s Reynolds number range; a derivation for output shaft torque and power that shows a match to the axial Euler Turbine Equation; eliminating the possibility of tangential disk velocity exceeding inlet working fluid velocity; and introducing a geometric nozzle height parameter. While nozzle geometry is limited to a slot providing identical flow velocity to each channel, variable nozzle height enables this velocity to be controlled by the turbine designer as the flow need not be choked. To illustrate the utility of this improvement, a numerical study of turbine performance with respect to variable nozzle height is provided. Since the extended model is differentiable, power sensitivity to design parameters can be quickly evaluated—a feature important when the main design goal is maximizing measurement sensitivity. The derivatives indicate two important results. First, the derivative of power with respect to Reynolds number for a turbine in the practical design range remains nearly constant over the whole laminar operating range. So, for a given working fluid mass flow rate, Tesla turbine power output is equally sensitive to variation in working fluid physical properties. Second, turbine power sensitivity increases as wetted disk area decreases; there is a design trade-off here between maximizing power output and maximizing power sensitivity.

References

1.
Carey
,
V. P.
,
2010
, “
Assessment of Tesla Turbine Performance for Small Scale Solar Rankine Combined Heat and Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122301
.
2.
Carey
,
V. P.
,
2009
, “Assessment of Tesla Turbine Performance for Small Scale Solar Rankine Combined Heat and Power Systems,”
ASME
Paper No. IMECE2009-10814.
3.
Krishnan
,
V. G.
,
Romanin
,
V.
,
Carey
,
V. P.
, and
Maharbiz
,
M. M.
,
2013
, “
Design and Scaling of Microscale Tesla Turbines
,”
J. Micromech. Microeng.
,
23
(
12)
, p. 125001.
4.
Tesla
,
N.
,
1913
, “Turbine,” U.S. Patent No.
1,061,206
.
5.
Tahil
,
W.
,
1998
, “
Theoretical Analysis of a Disk Turbine
,”
Tesla Engine Builder’s Association (TEBA) News
, Milwaukee, WI, pp.
18
19
.
6.
Tahil
,
W.
,
1999
, “
Theoretical Analysis of a Disk Turbine (2)
,”
Tesla Engine Builder’s Assoc. (TEBA) News
, Milwaukee, WI, pp. 17–18.
7.
Boyd
,
K. E.
, and
Rice
,
W.
,
1968
, “
Laminar Inward Flow of an Incompressible Fluid Between Rotating Disks, With Full Peripheral Admission
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
229
237
.
8.
Rice
,
W.
,
1965
, “
An Analytical and Experimental Investigation of Multiple-Disk Turbines
,”
ASME J. Eng. Power
,
87
(
1
), pp.
29
35
.
9.
Matsch
,
L.
, and
Rice
,
W.
,
1968
, “
An Asymptotic Solution for Laminar Flow of an Incompressible Fluid Between Rotating Disks
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
155
159
.
10.
Lawn
,
M. L.
, and
Rice
,
W.
,
1974
, “
Calculated Design Data for the Multiple-Disk Turbine Using Incompressible Fluid
,”
ASME J. Fluids Eng.
,
96
(
3
), pp.
252
258
.
11.
Truman
,
C. R.
,
Rice
,
W.
, and
Jankowski
,
D. F.
,
1978
, “
Laminar Throughflow of Varying-Quality Steam Between Corotating Disks
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
194
200
.
12.
Hoya
,
G. P.
, and
Guha
,
A.
,
2009
, “
Design of a Test Rig and Study of the Performance and Efficiency of a Tesla Disc Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
A4
), pp.
451
465
.
13.
Guha
,
A.
, and
Sengupta
,
S.
,
2014
, “
Similitude and Scaling Laws for the Rotating Flow Between Concentric Discs
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
4
), pp.
429
439
.
14.
Deng
,
Q.
,
Qi
,
W.
, and
Feng
,
Z.
,
2013
, “Improvement of a Theoretical Analysis Method for Tesla Turbines,”
ASME
Paper No. GT2013-95425.
15.
Qi
,
W.
,
Deng
,
Q.
,
Feng
,
Z.
, and
Yuan
,
Q.
,
2016
, “Influence of Disc Spacing Distance on the Aerodynamic Performance and Flow Field of Tesla Turbines,”
ASME
Paper No. GT2016-57971.
16.
Guha
,
A.
, and
Sengupta
,
S.
,
2014
, “
The Fluid Dynamics of Work Transfer in the Non-Uniform Viscous Rotating Flow Within a Tesla Disc Turbomachine
,”
Phys. Fluids
,
26
(3), p.
033601
.
17.
Yang
,
Z.
,
Weiss
,
H. L.
, and
Traum
,
M. J.
,
2013
, “
Gas Turbine Dynamic Dynamometry: A New Energy Engineering Laboratory Module
,”
American Society for Engineering Education (ASEE) North Midwest Section Conference
, Fargo, ND, Oct. 17–18, pp. 1–14.
18.
Usman
,
M.
,
Khan
,
S.
,
Ali
,
E.
,
Maqsood
,
M. I.
, and
Nawaz
,
H.
,
2013
, “
Modern Improved and Effective Design of Boundary Layer Turbine for Robust Control and Efficient Production of Green Energy
,”
J. Phys.: Conf. Ser.
,
439
(
1
), p.
012043
.
19.
Rice
,
W.
,
1991
, “
Tesla Turbomachinery
,”
Fourth International Tesla Symposium, Serbian Academy of Sciences and Arts
, Belgrade, Yugoslavia, Sept. 23–25, pp. 1–12.
20.
Gupta
,
H. E.
, and
Kodali
,
S. P.
,
2013
, “
Design and Operation of Tesla Turbo Machine—A State of the Art Review
,”
Int. J. Adv. Transp. Phenom.
,
2
(
1
), pp.
7
14
.
21.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042002
.
22.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041201
.
23.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
24.
Romanin
,
V. D.
,
Krishnan
,
V. G.
,
Carey
,
V. P.
, and
Maharbiz
,
M. M.
,
2012
, “Experimental and Analytical Study of Sub-Watt Scale Tesla Turbine Performance,”
ASME
Paper No. IMECE2012-89675.
25.
Pandey
,
R. J.
,
Pudasaini
,
S.
,
Dhakal
,
S.
,
Uprety
,
R. B.
, and
Neopane
,
H. P.
,
2014
, “
Design and Computational Analysis of 1 kW Tesla Turbine
,”
Int. J. Sci. Res. Publ.
,
4
(
11
), pp.
314
318
.
26.
Hasan
,
A.
, and
Benzamia
,
A.
,
2014
, “
Investigating the Impact of Air Temperature on the Performance of a Tesla Turbine Using CFD Modeling
,”
Int. J. Eng. Innovation Res.
,
3
(
6
), pp.
794
802
.
27.
Lampart
,
P.
, and
Jędrzejewski
,
L.
,
2011
, “
Investigation of Aerodynamics of Tesla Bladeless Microturbines
,”
J. Theor. Appl. Mech.
,
49
(
2
), pp.
477
499
.
28.
Alrabie
,
M. S.
,
Altamimi
,
F. N.
,
Altarrgemy
,
M. H.
,
Hadi
,
F.
,
Akbar
,
M. K.
, and
Traum
,
M. J.
,
2017
, “Method to Design a Hydro Tesla Turbine for Sensitivity to Varying Laminar Reynolds Number Modulated by Changing Working Fluid Viscosity,”
ASME
Paper No. ES2017-3442.
29.
Choon
,
T. W.
,
Rahman
,
A. A.
,
Jer
,
F. S.
, and
Aik
,
L. E.
,
2011
, “
Optimization of Tesla Turbine Using Computational Fluid Dynamics Approach
,” IEEE Symposium on Industrial Electronics and Applications (
ISIEA
), Langkawi, Malaysia, Sept. 25–28, pp.
477
480
.
30.
Barbarelli
,
S.
,
Florio
,
G.
, and
Scornaienchi
,
N. M.
,
2005
, “
Performance Analysis of a Low-Power Tangential Flow Turbine With Rotary Channel
,”
ASME J. Energy Resour. Technol.
,
127
(
4
), pp.
272
279
.
31.
Derakhshan
,
S.
, and
Kasaeian
,
N.
,
2014
, “
Optimization, Numerical, and Experimental Study of a Propeller Pump as Turbine
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012005
.
32.
Ho-Yan
,
B. P.
,
2011
, “
Tesla Turbine for Pico Hydro Applications
,”
Guelph Eng. J.
,
4
, pp.
1
8
.
33.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
, p.
382
.
34.
Yang
,
Z.
,
Weiss
,
H. L.
, and
Traum
,
M. J.
,
2013
, “
Dynamic Dynamometry to Characterize Disk Turbines for Space-Based Power
,” 23rd Annual Wisconsin Space Conference
(WSC)
, Milwaukee, WI, Aug. 15–16, pp. 1–8.
35.
Emran
,
T. A.
,
2011
, “
Tesla Turbine Torque Modeling for Construction of a Dynamometer and Turbine
,”
Master’s thesis
, University of North Texas, Denton, TX.
36.
Papamoschou
,
D.
,
1997
, “
Mach Wave Elimination in Supersonic Jets
,”
AIAA J.
,
35
(
10
), pp.
1604
1611
.
37.
Liu
,
S.
,
Yin
,
H.
,
Xiong
,
Y.
, and
Xiao
,
X.
,
2016
, “
A Comparative Analysis of Single Nozzle and Multiple Nozzles Arrangements for Syngas Combustion in Heavy Duty Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022004
.
38.
Beans
,
E. W.
,
1961
, “Performance Characteristics of a Friction Disk Turbine,” Doctoral dissertation, Pennsylvania State University, State College, PA.
39.
Emran
,
T. A.
,
Alexander
,
R. C.
,
Stallings
,
C. T.
,
DeMay
,
M. A.
, and
Traum
,
M. J.
,
2010
, “Method to Accurately Estimate Tesla Turbine Stall Torque for Dynamometer or Generator Load Selection,” ASME Early Career Technical Conference (
ECTC
), Atlanta, GA, Oct. 1–2.
40.
Klein
,
S. A.
, and
Alvarado
,
F. L.
,
2002
, “
Engineering Equation Solver
,”
F-Chart Software
,
Madison, WI
, accessed Sept. 29, 2017, http://www.fchart.com/ees/
41.
Haar
,
L.
,
Gallagher
,
J. S.
, and
Kell
,
G. S.
,
1984
,
NBS/NRC Steam Tables
,
Hemisphere Publishing
,
New York
.
42.
Zimmerle
,
D.
, and
Cirincione
,
N.
,
2011
, “Analysis of Performance of Direct Dry Cooling for Organic Rankine Cycle Systems,”
ASME
Paper No. ES2011-54202.
43.
Giacomel
,
J. A.
,
1987
, “Power Translation Device,” U.S. Patent No.
4,655,679
.
44.
Fréchette
,
L. G.
,
Lee
,
C.
,
Arslan
,
A.
, and
Liu
,
Y. C.
,
2003
, “Design of a Microfabricated Rankine Cycle Steam Turbine for Power Generation,”
ASME
Paper No. IMECE2003-42082.
45.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.
46.
Lee
,
C.
, and
Fréchette
,
L. G.
,
2011
, “
A Silicon Microturbopump for a Rankine-Cycle Power Generation Microsystem—Part I: Component and System Design
,”
J. Microelectromech. Syst.
,
20
(
1
), pp.
312
325
.
47.
McKeathen
,
J. E.
,
Reidy
,
R. F.
,
Boetcher
,
S. K. S.
, and
Traum
,
M. J.
,
2009
, “A Cryogenic Rankine Cycle for Space Power Generation,”
AIAA
Paper No. 2009-4247.
You do not currently have access to this content.