The necessity of limitation of carbon dioxide emissions, which also concerns the energy sector, causes that more and more effective and efficient methods of CO2 capture from the flue gas are being tested. Among these technologies are adsorption ones, which have been used for a gas separation for many years. The characteristic features of adsorption separation are: long life of the sorbents used, low energy expenditure, and minim effect on the environment; however, their application requires adequate initial preparation of the flue gas fed into the system of CO2 separation so that the flue gas temperature is as low as possible, and there is no water content in it. The study presents the concept and numerical calculations of the system for preparation of the flue gas feeding the CO2 adsorption (vacuum pressure swing adsorption (VPSA)) separation unit, using the absorption chiller (AC). In the presented concept, the AC is driven by the flue gas which is used as both: upper and lower heat source for AC; however, due to the amount of energy being carried out with the flue gas, which is larger than required by the AC, the additional heat exchangers must be implemented. The calculations presented in the study show that owing to the application of AC, flue gas may be cooled down to temperatures even about 5 °C. Moreover, the simultaneous process of flue gas cooling and drying in such system is realized at low energy expenditure which leads to improvement of the overall energy efficiency of the system of CO2 separation from flue gas and also to reduction of its dimensions.

References

1.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061602
.
2.
Figueroa
,
J. D.
,
Fout
,
T.
,
Plasynski
,
S.
,
McIlvried
,
H.
, and
Srivastava
,
R. D.
,
2008
, “
Advances in CO2 Capture Technology—The U.S. Department of Energy's Carbon Sequestration Program
,”
Int. J. Greenhouse Gas Control
,
2
(
1
), pp.
9
20
.
3.
Pennline
,
H. W.
,
Luebke
,
D. R.
,
Jones
,
K. L.
,
Myers
,
C. R.
,
Morsi
,
B. I.
,
Heintz
,
Y. J.
, and
Ilconich
,
J. B.
,
2008
, “
Progress in Carbon Dioxide Capture and Separation Research for Gasification-Based Power Generation Point Sources
,”
Fuel Process. Technol.
,
89
(
9
), pp.
897
907
.
4.
Granite
,
E. J.
, and
O'Brien
,
T.
,
2005
, “
Review of Novel Methods for Carbon Dioxide Separation From Flue and Fuel Gases
,”
Fuel Process. Technol.
,
86
(
14–15
), pp.
1423
1434
.
5.
Pires
,
J. C. M.
,
Martins
,
F. G.
,
Alvim-Ferraz
,
M. C. M.
, and
Simões
,
M.
,
2011
, “
Recent Developments on Carbon Capture and Storage: An Overview
,”
Chem. Eng. Res. Des.
,
89
(
9
), pp.
1446
1460
.
6.
Santarelli
,
M.
,
Briesemeister
,
L.
,
Gandiglio
,
M.
,
Hermann
,
S.
,
Kuczynski
,
P.
,
Kupecki
,
J.
,
Lanzini
,
A.
,
Llovell
,
F.
,
Papurello
,
D.
,
Spliethoff
,
H.
,
Swiatkowski
,
B.
,
Torres-Sanglas
,
J.
, and
Vega
,
L. F.
,
2017
, “
Carbon Recovery and Re-Utilization (CRR) From the Exhaust of a Solid Oxide Fuel Cell (SOFC): Analysis Through a Proof-of-Concept
,”
J. CO2 Utilization
,
18
, pp.
206
221
.
7.
Buhre
,
B. J. P.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
,
2005
, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust. Sci.
,
31
(
4
), pp.
283
307
.
8.
Wall
,
T. F.
,
2007
, “
Combustion Processes for Carbon Capture
,”
Proc. Combust. Inst.
,
31
(1), pp.
31
47
.
9.
Stec
,
M.
,
Tatarczuk
,
A.
,
Więcław-Solny
,
L.
,
Krótki
,
A.
,
Ściążko
,
M.
, and
Tokarski
,
S.
,
2015
, “
Pilot Plant Results for Advanced CO2 Capture Process Using Amine Scrubbing at the Jaworzno II Power Plant in Poland
,”
Fuel
,
151
, pp.
50
56
.
10.
Stec
,
M.
,
Tatarczuk
,
A.
,
Więcław-Solny
,
L.
,
Krótki
,
A.
,
Spietz
,
T.
,
Wilk
,
A.
, and
Śpiewak
,
D.
,
2015
, “
Demonstration of a Post-Combustion Carbon Capture Pilot Plant Using Amine-Based Solvents at the Łaziska Power Plant in Poland
,”
Clean Technol. Environ. Policy
,
18
(
1
), pp.
151
160
.
11.
Majchrzak-Kucęba
,
I.
,
2013
,
Testing and Evaluation of Novel CO2 Adsorption, Environmental Engineering
,
Taylor & Francis Group
,
London
.
12.
Wawrzyńczak
,
D.
, and
Nowak
,
W.
,
2009
, “
Application of Low Parameter PSA Process for Capture of CO2 From Flue Gases Emitted During Oxygen-Enriched Combustion
,”
Chem. Process Eng.
,
30
(4), pp.
589
602
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-2578-9641?q=68ffb1ff-cf42-4d5f-b189-f856524267da$7&qt=IN_PAGE
13.
Ruthven Douglas
,
M.
,
1984
,
Principles of Adsorption and Adsorption Processes
,
Wiley
,
New York
.
14.
Panowski
,
M.
,
Klajny
,
R.
, and
Sztekler
,
K.
,
2010
, “
Modelling of CO2 Adsorption From Exhaust Gases
,” 20th International Conference on Fluidized Bed Combustion (
FBC
), Xi'an, China, May 18–21, pp.
889
894
.
15.
Wawrzyńczak
,
D.
,
Bukalak
,
D.
,
Majchrzak-Kucęba
,
I.
, and
Nowak
,
W.
,
2014
, “
Effect of Desorption Pressure on CO2 Separation From Combustion Gas by Means of Zeolite 13X and Activated Carbon
,”
Pol. J. Environ. Stud.
,
23
(4), pp.
1437
1440
.http://www.pjoes.com/pdf/23.4/Pol.J.Environ.Stud.Vol.23.No.4.1437-1440.pdf
16.
Cen
,
Q.
,
Fang
,
M.
,
Wang
,
T.
,
Majchrzak-Kucęba
,
I.
,
Wawrzyńczak
,
D.
, and
Luo
,
Z.
,
2016
, “
Thermodynamics and Regeneration Studies of CO2 Adsorption on Activated Carbon
,”
Greenhouse Gases Sci. Technol.
,
6
(
6
), pp.
787
796
.
17.
Okano
,
H.
,
Jin
,
W.-L.
,
Hirose
,
T.
,
Kuramitsu
,
R.
,
Taguri
,
E.
, and
Nawata
,
H.
,
2002
, “
Honeycomb Rotor Adsorption Dehumidifiers for High Efficiency Desiccant Air-Conditioning
,”
Fundamentals of Adsorption
, Vol.
7
, IK International, Ltd., Chiba, Japan, pp. 926–933.
18.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021601
.
19.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042002
.
20.
Szega
,
M.
, and
Zymelka
,
P.
,
2017
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat and Cold in the CHP Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
.
21.
Zhang
,
N.
, and
Lior
,
N.
,
2006
, “
Development of a Novel Combined Absorption Cycle for Power Generation and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
254
265
.
22.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021204
.
23.
Li
,
Y.
,
Yan
,
M.
,
Zhang
,
L.
,
Chen
,
G.
,
Cui
,
L.
,
Song
,
Z.
,
Chang
,
J.
, and
Ma
,
C.
,
2016
, “
Method of Flash Evaporation and Condensation—Heat Pump for Deep Cooling of Coal-Fired Power Plant Flue Gas: Latent Heat and Water Recovery
,”
Appl. Energy
,
172
, pp.
107
117
.
24.
Wang
,
D.
,
Bao
,
A.
,
Kunc
,
W.
, and
Liss
,
W.
,
2012
, “
Coal Power Plant Flue Gas Waste Heat and Water Recovery
,”
Appl. Energy
,
91
(
1
), pp.
341
348
.
25.
Xu
,
G.
,
Xu
,
C.
,
Yang
,
Y.
,
Fang
,
Y.
,
Li
,
Y.
, and
Song
,
X.
,
2014
, “
A Novel Flue Gas Waste Heat Recovery System for Coal-Fired Ultra-Supercritical Power Plants
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
240
249
.
You do not currently have access to this content.