The aim of this paper is to identify and investigate the potential and limitations of diesel–gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (<5% diesel fraction). Experimental tests were carried out on a flexible single cylinder research engine (displacement 6.24 dm3) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monofuel gas engine and a state-of-the-art monofuel diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. At the same NOx level of 1.3 g/kWh, the efficiency of the dual fuel engine is ≈3.5% pts. lower than that of the gas engine. This is caused by the weaker ignition performance of the injected pilot fuel compared to that of the gas scavenged prechamber of the gas engine. On the other hand, the dual fuel concept has the potential to compete with the diesel engine. The dual fuel engine can be operated at the efficiency level of the diesel engine yet with significantly lower NOx emissions (3.5 g/kWh and 6.3 g/kWh, respectively). Since the injection of pilot fuel is of major importance for flame initialization, and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates, and three-dimensional (3D) computational fluid dynamics (CFD) simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3% to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay, and initial flame formation. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel–gas combustion process.

References

1.
Mooser
,
D.
,
2007
, “
Brenngase und Gasmotoren
,”
Handbuch Dieselmotoren
, 3rd ed.,
K.
Mollenhauer
and
H.
Tschöke
, eds., Springer,
Berlin
, p.
132ff
.
2.
Buchholz
,
B.
,
2014
, “
Saubere Großmotoren für die Zukunft—Herausforderung für die Forschung
,”
Die Zukunft der Großmotoren III, 3. Rostocker Großmotorentagung
,
H.
Harndorf
, ed., FVTR Forschungszentrum für Verbrennungsmotoren und Thermodynamik Rostock GmbH,
Rostock
,
Germany
, pp.
1
14
.
3.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
, Bell, S. R., Midkiff, K. C., Gong, W., Fiveland, S. B., and Willi, M.,
2004
, “
Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
665
671
.
4.
Mohr
,
H.
, and
Frobenius
,
M.
,
2014
, “
Optimierung von Diesel-/Gas-Großmotoren für unterschiedlichste Anwendungen
,”
Die Zukunft der Großmotoren III, 3. Rostocker Großmotorentagung
,
H.
Harndorf
, ed., FVTR Forschungszentrum für Verbrennungsmotoren und Thermodynamik Rostock GmbH,
Rostock
, Germany, pp.
138
149
.
5.
Raihan
,
M. S.
,
Guerry
,
E. S.
,
Dwivedi
,
U.
, and
Srinivasan
,
K. K.
,
2015
, “
Experimental Analysis of Diesel-Ignited Methane Dual-Fuel Low-Temperature Combustion in a Single-Cylinder Diesel Engine
,”
ASCE J. Energy Eng.
,
141
(
2
), pp.
12
71
.
6.
Sell
,
J.
,
2015
, “
Marine Klassifikation Von Gasmotoren—Beweggründe, Anforderungen, Herausforderungen
,”
Ninth Dessau Gas Engine Conference
, Dessau, Germany, Apr. 16–17, pp.
13
20
.
7.
Troberg
,
M.
,
Portin
,
K.
, and
Jarvi
,
A.
,
2013
, “
Update on Wärtsilä 4 Stroke Gas Product Development
,” CIMAC Congress, Shanghai, China, May 13–16, Paper No. 406.
8.
Watanabe
,
K.
,
Goto
,
S.
, and
Hashimoto
,
T.
,
2013
, “
Advanced Development of Medium Speed Gas Engine Targeting to Marine and Land
,” CIMAC Congress, Shanghai, China, May 13–16, Paper No. 99.
9.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Wimmer
,
A.
, Sprenger, F., Fasching, P., and Eichlseder, H.,
2016
, “
Dual Fuel Brennverfahren—Ein zukunftsweisendes Konzept vom PKW- bis zum Großmotorenbereich
?,” 37 Internationales Wiener Motorensymposium, Apr. 28–29. Band 2: Zweiter Tag, Düsseldorf, Germany,
H. P.
Lenz
, ed., pp.
403
428
.
10.
Kiesling
,
C.
,
Redtenbacher
,
C.
,
Kirsten
,
M.
, Wimmer, A., Imhof, D., Berger, I., and García-Oliver, J.,
2016
, “
Detailed Assessment of an Advanced Wide Range Diesel Injector for Dual Fuel Operation of Large Engines
,”
CIMAC Congress
, Helsinki, Finland, June 6–10, Paper No. 78.
11.
Eichmeier
,
J.
,
Wagner
,
U.
, and
Spicher
,
U.
,
2012
, “
Controlling Gasoline Low Temperature Combustion by Diesel Micro Pilot Injection
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p. 072802.
12.
Nieman
,
D. E.
,
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2012
, “
Heavy-Duty RCCI Operation Using Natural Gas and Diesel
,”
SAE Int. J. Engines
,
5
(
2
), pp.
270
285
.
13.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Singh
,
S.
, Midkiff, K. C., Bell, S. R., Gong, W., Fiveland, S. B., and Willi, M.,
2006
, “
The Advanced Injection Low Pilot Ignited Natural Gas Engine: A Combustion Analysis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
213
218
.
14.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Qi
,
Y.
,
2014
, “
Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p. 012003.
15.
Tomita
,
E.
,
Kawahara
,
N.
,
Piao
,
Z.
, and Yamaguchi, R.,
2002
, “
Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine
,”
SAE
Paper No. 2002-01-2723
.
16.
Krishnan
,
S. R.
,
Biruduganti
,
M.
,
Mo
,
Y.
, Bell, S. R., and Midkiff, K. C.,
2002
, “
Performance and Heat Release Analysis of a Pilot-Ignited Natural Gas Engine
,”
Int. J. Engine Res.
,
3
(
3
), pp.
171
184
.
17.
Pischinger
,
R.
,
Klell
,
M.
, and
Sams
,
T.
,
2009
, “
Thermodynamik der Verbrennungskraftmaschine
,”
Der Fahrzeugantrieb
(Technical Book Series), 3rd ed.,
H.
List
, ed., Springer,
Vienna, Austria
, pp.
102
, 338f, 349ff.
18.
Pucher
,
H.
,
2007
, “
Ladungswechsel und Aufladung
,”
Handbuch Dieselmotoren
, 3rd ed.,
K.
Mollenhauer
and
H.
Tschöke
, eds., Springer,
Berlin
, p.
59
.
19.
Trapp
,
C.
,
Böwing
,
R.
, and
Tinschmann
,
G.
,
2015
, “
Off-Highway-Gasmotoren
,”
Erdgas und erneuerbares Methan für den Fahrzeugantrieb
, 1st ed.,
R.
Van Basshuysen
, ed., Springer Vieweg, Wiesbaden, Germany, p.
470
.
20.
Laiminger
,
S.
,
Trapp
,
C.
,
Schaumberger
,
H.
, and Fouquet, M.,
2011
, “
Die nächste Generation von Jenbacher Gasmotoren von GE—die wegweisende Kombination von zweistufiger Aufladung und innovativen Brennverfahren
,”
Seventh Dessau Gas Engine Conference
, Dessau, Germany, Mar. 24–25, pp.
39
48
.
21.
Bosch
,
W.
,
1964
, “
Der Einspritzgesetz-Indikator, ein neues Meßgerät zur direkten Bestimmung des Einspritzgesetzes von Einzeleinspritzungen
,”
Motortech. Z.
,
25
(
7
), pp.
268
282
.
22.
Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
,
2002
, “
Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft—TA Luft) vom 24, Juli 2002
,” Berlin, Germany, accessed Jan. 14, 2016, http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Luft/taluft.pdf
23.
United States Environmental Protection Agency
,
2015
, “
Code of Federal Regulations, Title 40, Protection of Environment
,” 40 CFR 89.112, Table 1, United States Environmental Protection Agency, Washington, DC, accessed Dec. 16, 2015, https://www.gpo.gov/fdsys/browse/collectionCfr.action?ccollectionCod=CFR
24.
Dec
,
J.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,”
SAE
Paper No. 970873.
25.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
(Technical Book Series),
McGraw-Hill Series in Mechanical Engineering
,
New York
,
J.
Holman
, ed., p.
586 ff
.
26.
Krenn
,
M.
,
Redtenbacher
,
C.
,
Pirker
,
G.
, and Wimmer, A.,
2015
, “
A New Approach for Combustion Modeling of Large Dual-Fuel Engines
,”
Heavy-Duty-, on- und Off-Highway-Motoren, 10 Internationale MTZ-Fachtagung
, Speyer, Germany, pp. 1–14.
27.
Krenn
,
M.
,
Pirker
,
G.
,
Wimmer
,
A.
, Djuranec, S., Meier, M. C., Waldenmaier, U., and Zhu, J.,
2014
, “
Methodology for Analysis and Simulation of Dual Fuel Combustion in Large Engines
,”
THIESEL Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines
, Valencia, Spain, Sept. 9–12, pp. 1–19.
28.
Schlatter
,
S.
,
Schneider
,
B.
,
Wright
,
Y.
, and Boulouchos, K.,
2012
, “
Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine
,”
SAE
Paper No. 2012-01-0825.
29.
Kirsten
,
M.
,
Pirker
,
G.
,
Redtenbacher
,
C.
, Wimmer, A., and Chmela, F.,
2016
, “
Advanced Knock Detection for Diesel/Natural Gas Dual Fuel Engine Operation
,”
SAE
Paper No. 2016-01-0785.
30.
Vandersickel
,
A.
,
2011
, “
Two Approaches to Auto-Ignition Modelling for HCCI Applications
,”
Doctoral thesis
,
ETH Zurich, Zurich
, Germany, p.
20
.
31.
AVL List GmbH
,
2014
, “
Advanced Simulation Technologies Software Documentation, AVL FIRE v2014, CFD Solver
,” AVL List GmbH, Graz, Austria.
32.
AVL List GmbH
,
2014
, “
AVL FIRE Version 2014, Spray Module
,” Document No. 08.0205.2014, AVL List GmbH, Graz, Austria, pp. 2–6ff, 2–34.
33.
Ciezki
,
H.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigations of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.
34.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
,
1996
, “
Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixtures Under Engine Conditions
,”
26th Symposium (International) on Combustion/the Combustion Institute
, Pittsburgh, PA, pp. 781–789.
You do not currently have access to this content.