Drill-bit vibrations and bit wear have been identified as the two major causes for premature polycrystalline diamond-compact (PDC) bit failure and difficulty in accurately predicting PDC bit performance. The objective of this paper is to present a new approach to drilling optimization by developing an algorithm that defines and generates a constrained stable rotary speed (RPM)–weight-on-bit (WOB) working domain for a given system as opposed to the traditional RPM–WOB charts. The algorithm integrates the dynamic-stability model for bit vibrations with the bit-performance model for degraded bits. This study addresses the issues of dynamic-bit stability under torsional and lateral vibrations coupled with bit wear. The approach presented in this paper involves performing two separate analyses: vibration stability and bit-wear performance analysis. The optimum operating conditions are estimated at each depth of the drilling interval, taking into consideration the effect of bit wear and bit vibrations. Because the bit wears continuously while penetrating the rocks, discretization of depth is necessary for effective simulation. Discretization is done by dividing the drilling interval into subintervals of the desired length. Vibration-stability analysis and bit-wear performance analysis are preformed separately at every subinterval and then integrated over the discrete interval. For every subinterval, a WOB–RPM domain is determined within which the given system is dynamically stable (for vibrations), and the bit wear does not exceed the maximum allowable wear (MAW) for the section of the drilling interval selected. A unique concept to relate the fractional change in hydromechanical specific energy (HMSE) to the fractional change in bit wear has also been put forward that further constraints the WOB–RPM stable working domain. The new coupled vibration-stability chart, including the maximum rate of penetration (ROP), narrows down the conventional chart and provides different regions of operational stability. It has also been found that as the compressive strength of the rock increases, the bit-gauge friction factor also increases, which results in a compressed or reduced allowable working domain, both from the vibration-stability analysis and bit-performance analysis. Simple guidelines have been provided using the new stability domain chart to estimate the operating range for real-time optimization.
Skip Nav Destination
Article navigation
March 2018
Research-Article
Discrete Vibration Stability Analysis With Hydromechanical Specific Energy
Ankit A. Mirani,
Ankit A. Mirani
Petroleum Engineering,
Well Engineering Research Center for
Intelligent Automation (WeRcia),
University of Houston,
Houston, TX 77004
e-mail: miraniankit09@gmail.com
Well Engineering Research Center for
Intelligent Automation (WeRcia),
University of Houston,
Houston, TX 77004
e-mail: miraniankit09@gmail.com
Search for other works by this author on:
Robello Samuel
Robello Samuel
Search for other works by this author on:
Ankit A. Mirani
Petroleum Engineering,
Well Engineering Research Center for
Intelligent Automation (WeRcia),
University of Houston,
Houston, TX 77004
e-mail: miraniankit09@gmail.com
Well Engineering Research Center for
Intelligent Automation (WeRcia),
University of Houston,
Houston, TX 77004
e-mail: miraniankit09@gmail.com
Robello Samuel
Contributed by the Petroleum Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received December 12, 2016; final manuscript received June 1, 2017; published online October 4, 2017. Editor: Hameed Metghalchi.
J. Energy Resour. Technol. Mar 2018, 140(3): 032904 (8 pages)
Published Online: October 4, 2017
Article history
Received:
December 12, 2016
Revised:
June 1, 2017
Citation
Mirani, A. A., and Samuel, R. (October 4, 2017). "Discrete Vibration Stability Analysis With Hydromechanical Specific Energy." ASME. J. Energy Resour. Technol. March 2018; 140(3): 032904. https://doi.org/10.1115/1.4037899
Download citation file:
Get Email Alerts
Cited By
Fuel Consumption Prediction in Dual-Fuel Low-Speed Marine Engines With Low-Pressure Gas Injection
J. Energy Resour. Technol (December 2024)
A Semi-Analytical Rate-Transient Analysis Model for Fractured Horizontal Well in Tight Reservoirs Under Multiphase Flow Conditions
J. Energy Resour. Technol (November 2024)
Experimental Investigation of New Combustion Chamber Geometry Modification on Engine Performance, Emission, and Cylinder Liner Microstructure for a Diesel Engine
J. Energy Resour. Technol (December 2024)
Downdraft Gasification for Biogas Production: The Role of Artificial Intelligence
J. Energy Resour. Technol (December 2024)
Related Articles
The Shielding Effect of Drilling Fluids on Measurement While Drilling Tool Downhole Compasses—The Effect of Drilling Fluid Composition, Contaminants, and Rheology
J. Energy Resour. Technol (September,2016)
Relative Significance of Multiple Parameters on the Mechanical Specific Energy and Frictional Responses of Polycrystalline Diamond Compact Cutters
J. Energy Resour. Technol (March,2017)
Support Vector Regression and Computational Fluid Dynamics Modeling of Newtonian and Non-Newtonian Fluids in Annulus With Pipe Rotation
J. Energy Resour. Technol (May,2015)
The Effect of Dynamical Parameters on Precession in Rotary Drilling
J. Energy Resour. Technol (September,2001)
Related Proceedings Papers
Related Chapters
Study and Construction of Experiment Table of Drilling at Any Position of Rock Sample
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Study on Screw Drill Wear When Drilling Low Carbon Stainless Steel and Accompanying Phenomena in the Cutting Zone
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)