Horizontal drilling with successful multistage hydraulic fracture treatments is the most widely applied and effective method to enable economic development of hydrocarbon-bearing shale reservoirs. Once fracture networks are established, they must be propped open to maintain pathways for fluid migration through the production phase. As such, the design and application of effective and efficient proppant treatment is considered a key step to successfully develop the targeted resource. Unfortunately, the available literature and simulation tools to describe proppant transport in complex fracture networks are inadequate, and some of the fundamental mechanisms of proppant transport are poorly understood. The present study provides a critical review of relevant published literature to identify important mechanisms of particle transport and related governing equations. Based on that review, a mathematical model was developed to quantitatively predict the transport behavior of proppant particles in model fracture networks. Aspects of this mathematical model are compared against computational fluid dynamic (CFD) simulation, and implications of this work are discussed.

References

1.
Zhou
,
Q.
,
Dilmore
,
R.
,
Kleit
,
A.
, and
Wang
,
J. Y.
,
2014
, “
Evaluating Gas Production Performances in Marcellus Using Data Mining Technologies
,”
J. Natural Gas Sci. Eng.
,
20
, pp.
109
120
.
2.
Yuan
,
B.
,
Moghanloo
,
R. G.
, and
Shariff
,
E.
,
2016
, “
Integrated Investigation of Dynamic Drainage Volume and Inflow Performance Relationship (Transient IPR) to Optimize Multistage Fractured Horizontal Wells in Tight/Shale Formations
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052901
.
3.
Tiab
,
D.
,
Lu
,
J.
,
Nguyen
,
H.
, and
Owayed
,
J.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), p.
012901
.
4.
Cinco-Ley
,
H.
, and
Samaniego-V
,
F.
,
1981
, “
Transient Pressure Analysis: Finite Conductivity Fracture Versus Damaged Fracture Case
,”
SPE Annual Technical Conference and Exhibition, San Antonio
, TX, Oct. 4–7,
SPE
Paper SPE-10179-MS.
5.
Cinco-Ley
,
H.
, and
Samaniego-V
,
F.
,
1981
, “
Transient Pressure Analysis for Fractured Wells
,”
J. Pet. Technol.
,
33
(
9
), pp.
1749
1766
.
6.
Horne
,
R.
, and
Temeng
,
K.
,
1995
, “
Relative Productivities and Pressure Transient Modeling of Horizontal Wells With Multiple Fractures
,” SPE Middle East Oil Show, Manama, Bahrain, Mar. 11–14,
SPE
Paper No. SPE-29891-MS.
7.
Zhou
,
D.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
.
8.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
9.
Osholake
,
T.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2012
, “
Factor Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
10.
Novotny
,
E. J.
,
1977
, “
Proppant Transport
,” SPE Annual Technical Conference and Exhibition, Denver, CO, Sept. 9–12,
SPE
Paper No. SPE-6813-MS.
11.
Blot
,
M. A.
, and
Medlin
,
W. L.
,
1985
, “
Theory of Sand Transport in Thin Fluids
,” SPE Annual Technical Conference and Exhibition, Las Vegas, NV, Sept. 22–26,
SPE
Paper No. SPE-14468-MS.
12.
Bagnold
,
R. A.
,
1942
,
The Physics of Blown Sand and Desert Dunes
, William Morrow and Company,
New York
.
13.
Cabrejos
,
F. J.
, and
Klinzing
,
G. E.
,
1994
, “
Pick Up and Saltation Mechanisms of Solid Particles in Horizontal Pneumatic Transport
,”
J. Powder Technol.
,
79
(
2
), pp.
173
186
.
14.
Nabi
,
M.
,
Vriend
,
H. J.
,
Mosselman
,
E.
, and
Shimizu
,
Y.
,
2012
, “
Detailed Simulation of Morphodynamics—1: Hydrodynamic Model
,”
J. Water Resour.
,
48
(
12
), p. W12523.
15.
Mack
,
M.
,
Sun
,
J.
, and
Khadilar
,
C.
,
2014
, “
Quantifying Proppant Transport in Thin Fluids: Theory and Experiments
,” SPE Hydraulic Fracturing Technology Conference and Exhibition, Woodland, TX, Feb. 4–6,
SPE
Paper No. SPE-168637-MS.
16.
Sahai
,
R.
,
2012
, “
Laboratory Evaluation of Proppant Transport in Complex Fracture Systems
,”
Ph.D. thesis
, Colorado School of Mines, Golden, CO.https://dspace.library.colostate.edu/bitstream/handle/11124/70696/Sahai_mines_0052N_10007.pdf?sequence=1
17.
Clark
,
P. E.
, and
Quadir
,
J. A.
,
1981
, “
Proppant Transport in Hydraulic Fractures: A Critical Review of Particle Settling Velocity Equations
,” SPEIDOE Low Permeability Gas Reservoirs Symposium, Denver, CO, May 27–29,
SPE
Paper No. SPE-9866-MS.
18.
Steinour
,
H. H.
,
1944
, “
Rate of Sedimentation: Nonflocculated Suspensions of Uniform Spheres
,”
Inst. Eng. Chem.
,
36
(
7
), pp.
618
624
.
19.
Richardson
,
J. F.
, and
Zaki
,
W. N.
,
1954
, “
Sedimentation and Fluidization—Part 1
,”
Trans. Inst. Chem. Eng.
,
32
, pp.
35
53
.http://garfield.library.upenn.edu/classics1979/A1979HZ20300001.pdf
20.
Maude
,
A. D.
, and
Whitemore
,
R. L.
,
1958
, “
A Generalized Theory of Sedimentation
,”
J. Appl. Phys.
,
9
(12), pp. 477–482.
21.
Von Karman
,
T.
,
1930
, “
Mechanische Ähnlichkeit Und Turbulenz
,”
Third International Congress on Applied Mechanics
, Stockholm, Sweden, Aug. 24–29, pp. 58–76.
22.
Sumer
,
B. M.
,
1974
, “
Mean Velocity and Longitudinal Dispersion of Heavy Particles in Turbulent Open-Channel Flow
,”
J. Fluid Mech.
,
65
(1), pp.
11
28
.
23.
Fischer
,
H. B.
,
List
,
E. J.
,
Koh
,
R. C. Y.
,
Imberger
,
J.
, and
Brooks
,
N. H.
,
1979
,
Mixing in Inland and Coastal Waters
,
Academic Press
,
Orlando, FL
.
24.
Elder
,
J. W.
,
1959
, “
The Dispersion of Marked Fluid in Turbulent Shear Flow
,”
J. Fluid Mech.
,
5
(4), pp.
544
560
.
25.
Shields
,
A.
,
1936
, “
Anwendung Der Ahnlichkeitsmechanik Und Turbulenz-Forschung Auf Die Geschiebebewegung
,” Ph.D. thesis, Technical University of Berlin, Berlin.
26.
Van Rijn
,
L. C.
,
1984
, “
Sediment Transport—Part I: Bed Load Transport
,”
ASCE J. Hydraul. Eng.
,
110
(10), pp.
1431
1456
.
27.
Soulsby
,
R.
,
1997
,
Dynamics of Marine Sands: A Manual for Practical Applications
,
Thomas Telford
,
London
.
28.
Davis
,
S. J.
, and
White
,
C. M.
,
1928
, “
An Experimental Study of Flow of Water in Pipe of Rectangular
,”
Math. Phys. Eng. Sci.
,
119
(
781
), pp.
92
106
.
29.
Meyer-Peter
,
E.
, and
Muller
,
R.
,
1948
, “
Formulas for Bed-Load Transport
,”
Report on the Second Meeting, International Association for Hydraulic Structures Research
, Stockholm, Sweden, June 7–9, pp.
39
64
.https://repository.tudelft.nl/islandora/object/uuid%3A4fda9b61-be28-4703-ab06-43cdc2a21bd7
30.
Wang
,
Z.
, and
Zheng
,
X.
,
2004
, “
Theoretical Prediction of Creep Flux in Aeolian Sand Transport
,”
J. Powder Technol.
,
139
(2), pp.
123
128
.
31.
Khakhar
,
D. V.
,
Orpe
,
A. V.
,
Andrese´n
,
P.
, and
Ottino
,
J. M.
,
2001
, “
Surface Flows of Granular Materials: Model and Experiments in Heap Formation
,”
J. Fluid Mech.
,
441
, pp.
255
264
.
32.
Wilcock
,
P. R.
, and
Crowe
,
J. C.
,
2003
, “
A Surface-Based Transport Model for Sand and Gravel
,”
J. Hydraul. Eng.
,
129
(
2
), pp.
120
128
.
33.
Nakagawa
,
H.
, and
Tsujimoto
,
T.
,
1980
, “
Sand Bed Instability Due to Bed Load Motion
,”
J. Hydraul. Div.
,
106
(
12
), pp.
2029
2051
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0009944
34.
Nagata
,
N.
,
Hosoda
,
T.
,
Nakato
,
T.
, and
Muramoto
,
Y.
,
2005
, “
Three Dimensional Numerical Model for Flow and Bed Deformation Around River Hydraulic Structures
,”
ASCE J. Hydraul. Eng.
,
131
(
12
), pp.
1074
1087
.
35.
Einstein
,
H. A.
,
1942
, “
Formulae for Transportation of Bed-Load
,”
ASCE Trans.
,
107
(1), pp.
561
577
.
36.
Brown
,
C. B.
,
1950
, “
Sediment Transport
,”
Engineering Hydraulics
,
H.
Rouse
, ed.,
Wiley
,
New York
, Chap. 12.
37.
Yalin
,
M. S.
,
1963
, “
An Expression for Bed-Load Transportation
,”
ASCE Proc.
,
89
(3), pp.
221
250
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0012880
38.
McCormick
,
B. W.
,
Aerodynamics, Aeronautics, and Flight Dynamics
,
Wiley
,
New York
.
39.
CD-adapco
,
2013
, “
STAR-CCM. Version 8.02.011, User Manual
,” CD-adapco, Melville, NY.
40.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
,
Cambridge, MA
.
41.
Kinzel
,
M. P.
,
Peltier
,
L. J.
,
Rosendall
,
B.
,
Elbert
,
M.
,
Rizhakov
,
A.
,
Berkoe
,
J.
, and
Knight
,
K.
,
2015
, “
A Model Constraint for Polydisperse Solids in Multifluid Flows
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111104
.
You do not currently have access to this content.