In this paper, experimental techniques have been developed to prepare and characterize chemical agents for augmenting injectivity in low permeability reservoirs. First, chemical agents are selected, formulated, and optimized on the basis of interfacial tension (IFT), scale inhibition ratio, and clay particle size distribution and specific surface area. The spinning drop method is utilized to measure the IFT between crude oil and the formulated solution, while contact angle between brine and rock surface is measured to examine effect of the chemical agents on the rock wettability. Also, scale inhibition ratio and antiswelling ratio are, respectively, measured by performing static-state scale inhibition experiments and centrifugation experiments. Then, displacement experiments are conducted to evaluate injectivity improvement after one pore volume (PV) of such formulated chemical agents has been injected into a core plug. It is found that the optimized solution consists of 0.15 wt % fluorocarbon surfactant FC-117, 4.00 wt % isopropanol, 1.20 × 10−3 wt % scale inhibitor 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), and 1.50 wt % clay stabilizer diallyl dimethyl ammonium chloride (DMDAAC). The IFT between crude oil and the optimized solution can be reduced to 5.36 × 10−3 mN/m within a short time, while the scale inhibition ratio and antiswelling ratio are measured to be 94.83% and 86.96%, respectively. It is found from comprehensive evaluation experiments that such a formulated and optimized solution can not only alter the rock surface from oil-wet to water-wet but also reduce the scale formation of the reservoir brine. In addition, it is shown from displacement experiments that the pressure is decreased by 34.67% after the injection of such formulated solution. When the formulated solution contains 0–300,000 mg/L sodium chloride (NaCl) and 0–5000 mg/L calcium chloride (CaCl2) at 50–90 °C, the IFT between crude oil and the formulated solution can be reduced to lower than 10−2 mN/m.

References

1.
Hoffman
,
B. T.
, and
Shoaib
,
S.
,
2013
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022801
.
2.
Song
,
C.
, and
Yang
,
D.
,
2017
, “
Experimental and Numerical Evaluation of CO2 Huff-n-Puff Processes in Bakken Formation
,”
Fuel
,
190
, pp.
145
162
.
3.
Yang
,
D.
,
Song
,
C.
,
Zhang
,
J.
,
Zhang
,
G.
,
Ji
,
Y.
, and
Gao
,
J.
,
2015
, “
Performance Evaluation of Injectivity for Water-Alternating-CO2 Processes in Tight Oil Formations
,”
Fuel
,
139
(
1
), pp.
292
300
.
4.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J. Y.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
5.
Nasr-El-Din
,
H. A.
,
2005
, “
Formation Damage Induced by Chemical Treatments: Case Histories
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
214
224
.
6.
Stamatakis
,
E.
,
Haugan
,
A.
,
Chatzichristos
,
C.
,
Stubos
,
A.
,
Muller
,
J.
, and
Palyvos
,
I.
,
2006
, “
Study of Calcium Carbonate Precipitation in the Near-Well Region Using 47Ca as Tracer
,”
SPE Prod. Oper.
,
21
(
1
), pp.
33
39
.
7.
Bennion
,
D. B.
, and
Thomas
,
F. B.
,
2005
, “
Formation Damage Issues Impacting the Productivity of Low Permeability, Low Initial Water Saturation Gas Producing Formations
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
240
247
.
8.
Yassin
,
M. R.
,
Ayatollahi
,
S.
,
Rostami
,
B.
,
Hassani
,
K.
, and
Taghikhani
,
V.
,
2015
, “
Micro-Emulsion Phase Behavior of a Cationic Surfactant at Intermediate Interfacial Tension in Sandstone and Carbonate Rocks
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012905
.
9.
Hou
,
B.
,
Wang
,
Y.
,
Cao
,
X.
,
Zhang
,
J.
,
Song
,
X.
,
Ding
,
M.
, and
Chen
,
W.
,
2016
, “
Mechanisms of Enhanced Oil Recovery by Surfactant-Induced Wettability Alteration
,”
J. Dispersion Sci. Technol.
,
37
(
9
), pp.
1259
1267
.
10.
Pu
,
W.
,
Yuan
,
C.
,
Wang
,
X.
,
Sun
,
L.
,
Zhao
,
R.
,
Song
,
W.
, and
Li
,
X.
,
2016
, “
The Wettability Alteration and the Effect of Initial Rock Wettability on Oil Recovery in Surfactant-Based Enhanced Oil Recovery Processes
,”
J. Dispersion Sci. Technol.
,
37
(
4
), pp.
602
611
.
11.
Bera
,
A.
,
Mandal
,
A.
, and
Kumar
,
T.
,
2015
, “
The Effect of Rock-Crude Oil-Fluid Interactions on Wettability Alteration of Oil-Wet Sandstone in the Presence of Surfactants
,”
Pet. Sci. Technol.
,
33
(
5
), pp.
542
549
.
12.
Zlegler
,
V. M.
,
1988
, “
Laboratory Investigation of High-Temperature Surfactant Flooding
,”
SPE Reservoir Eng.
,
3
(
2
), pp.
586
596
.
13.
Li
,
G.
,
Xu
,
J.
,
Mu
,
J.
,
Zhai
,
L.
,
Shui
,
L.
,
Chen
,
W.
,
Jiang
,
J.
,
Chen
,
F.
,
Guo
,
D.
, and
Lin
,
W.
,
2005
, “
Design and Application of an Alkaline-Surfactant-Polymer Flooding System in Field Pilot Test
,”
J. Dispersion Sci. Technol.
,
26
(
6
), pp.
709
717
.
14.
Bryan
,
J.
, and
Kantzas
,
A.
,
2009
, “
Potential for Alkali-Surfactant Flooding in Heavy Oil Reservoirs Through Oil-in-Water Emulsification
,”
J. Can. Pet. Technol.
,
48
(
2
), pp.
37
46
.
15.
Mungan
,
N.
,
1964
, “
Role of Wettability and Interfacial Tension in Water Flooding
,”
SPE J.
,
4
(
2
), pp.
115
123
.
16.
Xu
,
N.
,
Liu
,
W.
, and
Li
,
H.
,
2007
, “
A Study on Quaternary Ammonium Salt Gemini Surfactant G-52 for Water Injection Well Stimulation in Low Permeability Reservoirs
,”
Oilfield Chem.
,
24
(
2
), pp.
138
142
.
17.
Gong
,
H.
,
Li
,
Y.
,
Dong
,
M.
,
Zhu
,
T.
, and
Yu
,
L.
,
2016
, “
Enhanced Heavy Oil Recovery by Organic Alkali Combinational Flooding Solutions
,”
J. Dispersion Sci. Technol.
,
38
(
4
), pp.
551
557
.
18.
Zhang
,
T.
,
Cao
,
X.
,
Wang
,
X.
, and
Song
,
C.
,
2017
, “
Synthesis, Surface Activity and Thermodynamic Properties of Cationic Gemini Surfactants With Diester and Rigid Spacers
,”
J. Mol. Liq.
,
230
, pp.
505
510
.
19.
Lee
,
S.
,
Lee
,
J.
,
Yu
,
H.
, and
Lim
,
J.
,
2016
, “
Synthesis of Environment Friendly Nonionic Surfactants From Sugar Base and Characterization of Interfacial Properties for Detergent Application
,”
J. Ind. Eng. Chem.
,
38
, pp.
157
166
.
20.
Gao
,
B.
, and
Sharma
,
M. M.
,
2013
, “
A New Family of Anionic Surfactants for Enhanced- Oil-Recovery Applications
,”
SPE J.
,
18
(
5
), pp.
829
840
.
21.
Chang
,
H.
,
Cui
,
Y.
,
Wei
,
W.
,
Li
,
X.
,
Gao
,
W.
,
Zhao
,
X.
, and
Yin
,
S.
,
2017
, “
Adsorption Behavior and Wettability by Gemini Surfactants With Ester Bond at Polymer-Solution-Air Systems
,”
J. Mol. Liq.
,
230
, pp.
429
436
.
22.
Tavassoli
,
S.
,
Kazemi Nia Korrani
,
A.
,
Pope
,
G. A.
, and
Sepehrnoori
,
K.
,
2016
, “
Low-Salinity Surfactant Flooding—A Multimechanistic Enhanced-Oil-Recovery Method
,”
SPE J.
,
21
(
3
), pp.
744
760
.
23.
Jiang
,
P.
,
Li
,
N.
,
Ge
,
J.
,
Zhang
,
G.
,
Wang
,
Y.
,
Chen
,
L.
, and
Zhang
,
L.
,
2014
, “
Efficiency of a Sulfobetaine-Type Surfactant on Lowering IFT at Crude Oil–Formation Water Interface
,”
Colloids Surf. A
,
443
, pp.
141
148
.
24.
Zhang
,
J.
,
Li
,
G.
,
Yang
,
F.
,
Xu
,
N.
,
Fan
,
H.
,
Yuan
,
T.
, and
Chen
,
L.
,
2012
, “
Hydrophobically Modified Sodium Humate Surfactant: Ultra-Low Interfacial Tension at the Oil/Water Interface
,”
Appl. Surf. Sci.
,
259
, pp.
774
779
.
25.
Babu
,
K.
,
Pal
,
N.
,
Bera
,
A.
,
Saxena
,
V. K.
, and
Mandal
,
A.
,
2015
, “
Studies on Interfacial Tension and Contact Angle of Synthesized Surfactant and Polymeric From Castor Oil for Enhanced Oil Recovery
,”
Appl. Surf. Sci.
,
353
, pp.
1126
1136
.
26.
Tabary
,
R.
,
Bazin
,
B.
,
Douarche
,
F.
,
Moreau
,
P.
, and
Oukhemanou-Destremaut
,
F.
,
2013
, “
Surfactant Flooding in Challenging Conditions: Towards Hard Brines and High Temperatures
,”
SPE Middle East Oil and Gas Show and Conference
, Manama City, Bahrain, Mar. 10–13,
SPE
Paper No. SPE-164359-MS.
27.
Sun
,
N.
,
Jing
,
J.
,
Jiang
,
H.
,
An
,
Y.
,
Wu
,
C.
,
Zheng
,
S.
, and
Qi
,
H.
,
2017
, “
Effects of Surfactants and Alkalis on the Stability of Heavy-Oil-in-Water Emulsions
,”
SPE J.
,
22
(
1
), pp.
120
129
.
28.
Kumar
,
S.
, and
Mandal
,
A.
,
2016
, “
Studies on Interfacial Behavior and Wettability Change Phenomena by Ionic and Nonionic Surfactants in Presence of Alkalis and Salt for Enhanced Oil Recovery
,”
Appl. Surf. Sci.
,
372
, pp.
42
51
.
29.
Li
,
Y.
,
Zhao
,
J.
,
Pu
,
W.
, and
Zhao
,
T.
,
2014
, “
Solutions of Long-Chain Alcohols and Surfactants for Enhanced Oil Recovery in High-Temperature Low-Permeability Reservoirs
,”
Chem. Technol. Fuels Oils
,
50
(
4
), pp.
327
336
.
30.
Zhang
,
J.
,
Zhang
,
G.
,
Ge
,
J.
,
Feng
,
A.
,
Jiang
,
P.
,
Li
,
R.
,
Zhang
,
Y.
, and
Fu
,
X.
,
2012
, “
Laboratory Studies of Depressurization With a High Concentration of Surfactant in Low-Permeability Reservoirs
,”
J. Dispersion Sci. Technol.
,
33
(
11
), pp.
1589
1595
.
31.
Zhao
,
J.
,
Dai
,
C.
,
Fang
,
J.
,
Feng
,
X.
,
Yan
,
L.
, and
Zhao
,
M.
,
2014
, “
Surface Properties and Adsorption Behavior of Cocamidopropyl Dimethyl Amine Oxide Under High Temperature and High Salinity Conditions
,”
Colloids Surf. A
,
450
, pp.
93
98
.
32.
Shehab
,
A.
,
Chang
,
D.
,
Vu
,
T.
,
Maša
,
P.
, and
Keith
,
P. J.
,
2017
, “
High Temperature Ultralow Water Content Carbon Dioxide-in-Water Foam Stabilized With Viscoelastic Zwitterionic Surfactants
,”
J. Colloid Interface Sci.
,
488
, pp.
79
91
.
33.
Wang
,
D.
,
Liu
,
C.
,
Wu
,
W.
, and
Wang
,
G.
,
2008
, “
Development of an Ultralow Interfacial Tension Surfactant in Systems With No-Alkali for Chemical Flooding
,”
SPE/DOE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 19–23,
SPE
Paper No. SPE-109017-MS.
34.
Tehrani-Bagha
,
A. R.
,
Nikkar
,
H.
,
Menger
,
F. M.
, and
Holmberg
,
K.
,
2012
, “
Degradation of Two Persistent Surfactants by UV-Enhanced Ozonation
,”
J. Surfactants Deterg.
,
15
(
1
), pp.
59
66
.
35.
Saeed
,
J. D. S.
,
Mohammad
,
S.
, and
Abdolhossein
,
H. S.
,
2016
, “
Toward Mechanistic Understanding of Natural Surfactant Flooding in Enhanced Oil Recovery Processes: The Role of Salinity, Surfactant Concentration and Rock Type
,”
J. Mol. Liq.
,
222
, pp.
632
639
.
36.
Adamson
,
A. W.
, and
Gast
,
A. P.
,
1997
,
Physical Chemistry of Surfaces
,
Wiley
,
New York
.
37.
Li
,
D.
,
2002
, “The Effect of Biosurfactant on the Interfacial Tension and Adsorption Loss of Surfactant in ASP Flooding,” Ph.D. dissertation, Daqing Petroleum Institute, Heilongjiang, China.
38.
Kumar
,
T.
,
Vishwanatham
,
S.
, and
Kundu
,
S. S.
,
2010
, “
A Laboratory Study on Pteroyl-L-Glutamic Acid as a Scale Prevention Inhibitor of Calcium Carbonate in Aqueous Solution of Synthetic Produced Water
,”
J. Pet. Sci. Eng.
,
71
, pp.
1
7
.
39.
Liu
,
P.
,
Zhou
,
L.
,
Yang
,
C.
,
Xia
,
H.
,
He
,
Y.
, and
Feng
,
M. A.
,
2015
, “
A Complex Based on Imidazole Ionic Liquid and Copolymer of Acrylamide and Phenoxyacetamide Modification for Clay Stabilizer
,”
J. Appl. Polym. Sci.
,
132
(
9
), p.
41536
.
40.
Karnanda
,
W.
,
Benzagouta
,
M. S.
,
AlQuraishi
,
A.
, and
Amro
,
M. M.
,
2013
, “
Effect of Temperature, Pressure, Salinity, and Surfactant Concentration on IFT for Surfactant Flooding Optimization
,”
Arabian J. Geosci.
,
6
(
9
), pp.
3535
3544
.
41.
Mehranfar
,
A.
, and
Ghazanfari
,
M. H.
,
2014
, “
Investigation of the Microscopic Displacement Mechanisms and Macroscopic Behavior of Alkaline Flooding at Different Wettability Conditions in Shaly Glass Micromodels
,”
J. Pet. Sci. Eng.
,
122
, pp.
595
615
.
42.
Obied
,
M. A.
,
Alkhaldi
,
M. H.
,
Mubarak
,
T. A.
,
Yami
,
I. S.
, and
Sahman
,
F. M.
,
2015
, “
Polymer-Based Scale Inhibitors for Seawater Injection Operations in High-Salinity Formation Water Reservoirs
,”
Abu Dhabi International Petroleum Exhibition and Conference
, Abu Dhabi, United Arab Emirates, Nov. 9–12,
SPE
Paper No. SPE-177417-MS.
43.
Zhang
,
B.
,
Zhang
,
L.
,
Li
,
F.
,
Hu
,
W.
, and
Hannam
,
M. P.
,
2010
, “
Testing the Formation of Ca-Phosphonate Precipitates and Evaluating the Anionic Polymers as Ca-Phosphonate Precipitates and CaCO3 Scale Inhibitor in Simulated Cooling Water
,”
Corros. Sci.
,
52
(
12
), pp.
3883
3890
.
44.
Zhang
,
G.
,
Ge
,
J.
,
Sun
,
M.
,
Pan
,
B.
,
Mao
,
T.
, and
Song
,
Z.
,
2007
, “
Investigation of Scale Inhibitor Mechanisms Based on the Effect of Scale Inhibitor on Calcium Carbonate Crystal Forms
,”
Sci. China Ser. B: Chem.
,
50
(
1
), pp.
114
120
.
45.
Zhao
,
X.
,
Bai
,
Y.
,
Wang
,
Z.
,
Shang
,
X.
,
Qiu
,
G.
, and
Chen
,
L.
,
2013
, “
Low Interfacial Tension Behavior Between Organic Alkali/Surfactant/Polymer System and Crude Oil
,”
J. Dispersion Sci. Technol.
,
34
(
6
), pp.
756
763
.
46.
Barati-Harooni
,
A.
,
Soleymanzadeh
,
A.
,
Tatar
,
A.
,
Najafi-Marghmaleki
,
A.
,
Samadi
,
S. J.
,
Yari
,
A.
,
Roushani
,
B.
, and
Mohammadi
,
A. H.
,
2016
, “
Experimental and Modeling Studies on the Effects of Temperature, Pressure and Brine Salinity on Interfacial Tension in Live Oil-Brine Systems
,”
J. Mol. Liq.
,
219
, pp.
985
993
.
You do not currently have access to this content.