Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.

References

1.
Gupta
,
M.
,
Bell
,
S.
, and
Tillman
,
S.
,
1996
, “
An Investigation of Lean Combustion in a Natural Gas-Fueled Spark-Ignited Engine
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
145
151
.
2.
Xu
,
H.
, and
LaPointe
,
L. A.
,
2015
, “
Combustion Characteristics of Lean Burn and Stoichiometric With Exhaust Gas Recirculation Spark-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111511
.
3.
Weaver
,
C. S.
,
1989
, “
Natural Gas Vehicles—A Review of the State of the Art
,”
SAE
Technical Paper 892133.
4.
Beck
,
N. J.
,
1990
, “
Natural Gas—A Rational Approach to Clean Air
,”
SAE
Technical Paper 902228.
5.
Dumitrescu
,
C. E.
,
Padmanaban
,
V.
, and
Liu
,
J.
,
2018
, “
An Experimental Investigation of Early Flame Development in an Optical SI Engine Fueled With Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082802
.
6.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
Combustion Visualization in a Single-Cylinder Heavy-Duty CI Engine Converted to Natural Gas SI Operation
,”
Proceedings of the Eastern States Section of the Combustion Institute’s Spring Technical Meeting
,
State College, PA
,
Mar. 4–7
, Paper 3C06.
7.
Jones
,
M. G. K.
, and
Heaton
,
D. M.
,
1989
, “
Nebula Combustion System for Lean Burn Spark Ignited Gas Engines
,”
SAE
Technical Paper 890211.
8.
Bommisetty
,
H.
,
Liu
,
J.
,
Kooragayala
,
R.
, and
Dumitrescu
,
C.
,
2018
, “
Fuel Composition Effects in a CI Engine Converted to SI Natural Gas Operation
,”
SAE
Technical Paper 2018-01-1137.
9.
Germane
,
G. J.
,
Wood
,
C. G.
, and
Hess
,
C. C.
,
1983
, “
Lean Combustion in Spark-Ignited Internal Combustion Engines—A Review
,”
SAE
Technical Paper 831694.
10.
Bolt
,
J. A.
, and
Holkeboer
,
D. H.
,
1962
, “
Lean Fuel/Air Mixtures for High-Compression Spark-Ignited Engines
,”
SAE
Technical Paper 620524.
11.
Cartellieri
,
W.
,
Chmela
,
F.
,
Kapus
,
P.
, and
Tatschl
,
R.
,
1994
, “
Mechanisms Leading to Stable and Efficient Combustion in Lean Burn Gas Engines
,”
Proceedings of the International Symposium COMODIA
,
Yokohama, Japan
,
July 11–14
, Paper C94P017.
12.
McTaggart-Cowan
,
G. P.
,
Reynolds
,
C. C. O.
, and
Bushe
,
W. K.
,
2006
, “
Natural Gas Fuelling for Heavy-Duty On-Road Use: Current Trends and Future Direction
,”
Int. J. Environ. Stud.
,
63
(
4
), pp.
421
440
.
13.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
3D CFD Simulation of a CI Engine Converted to SI Natural Gas Operation Using the G-Equation
,”
Fuel
,
232
(
1
), pp.
833
844
.
14.
Donateo
,
T.
,
Tornese
,
F.
, and
Laforgia
,
D.
,
2013
, “
Computer-Aided Conversion of an Engine From Diesel to Methane
,”
Appl. Energy
,
108
(
1
), pp.
8
23
.
15.
Zheng
,
J.
,
Chen
,
X.
,
Hu
,
T.
, and
Zhan
,
Z.
,
2013
, “
The Research Development in Direct Injection Spark-Ignition Natural Gas Engine
,”
Proceedings of the FISITA 2012 World Automotive Congress
,
Beijing, China
,
Nov. 27–30
, pp.
51
63
.
16.
Zheng
,
J.
,
Huang
,
Z.
,
Wang
,
J.
,
Wang
,
B.
,
Ning
,
D.
, and
Zhang
,
Y.
,
2009
, “
Effect of Compression Ratio on Cycle-by-Cycle Variations in a Natural Gas Direct Injection Engine
,”
Energy Fuels
,
23
(
11
), pp.
5357
5366
.
17.
Polcyn
,
N.
,
Lai
,
M.-C.
, and
Lee
,
P.-I.
,
2014
, “
Investigation of Ignition Energy With Visualization on a Spark Ignited Engine Powered by CNG
,”
SAE
Technical Paper 2014-01-1331.
18.
Karim
,
G. A.
, and
Wierzba
,
I.
,
1989
, “
Experimental and Analytical Studies of the Lean Operational Limits in Methane Fueled Spark Ignition and Compression Ignition Engines
,”
SAE
Technical Paper 891637.
19.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
20.
Unich
,
A.
,
Bata
,
R. M.
, and
Lyons
,
D. W.
,
1993
, “
Natural Gas: A Promising Fuel for I.C. Engines
,”
SAE
Technical Paper 930929.
21.
Meyer
,
R.
,
Meyers
,
D.
,
Shahed
,
S. M.
, and
Duggal
,
V. K.
,
1992
, “
Development of a Heavy Duty On-Highway Natural Gas-Fueled Engine
,”
SAE
Technical Paper 922362.
22.
Johansson
,
B.
, and
Olsson
,
K.
,
1995
, “
Combustion Chambers for Natural Gas SI Engines Part 1: Fluid Flow and Combustion
,”
SAE
Technical Paper 950469.
23.
Olsson
,
K.
, and
Johansson
,
B.
,
1995
, “
Combustion Chambers for Natural Gas SI Engines Part 2: Combustion and Emissions
,”
SAE
Technical Paper 950517.
24.
Van Der Weide
,
J.
,
Seppen
,
J. J.
,
Van Ling
,
J. A. N.
, and
Dekker
,
H. J.
,
1988
, “
Experiences With CNG and LPG Operated Heavy Duty Vehicles With Emphasis on US HD Diesel Emission Standards
,”
SAE
Technical Paper 881657.
25.
Shiells
,
W.
, and
Garcia
,
P.
,
1988
, “
Experience With the Operation of Heavy Vehicle Engines Dedicated to the Use of CNG and LPG Fuels
,”
First International Conference and Exhibition on Natural Gas Vehicles
,
Sydney, Australia
,
Oct. 27–30
.
26.
Raine
,
R. R.
,
Stephenson
,
J.
, and
Elder
,
S. T.
,
1988
, “
Characteristics of Diesel Engines Converted to Spark Ignition Operation Fuelled With Natural Gas
,”
SAE
Technical Paper 880149.
27.
Goto
,
S.
,
Lee
,
D.
,
Harayama
,
N.
,
Honjo
,
F.
,
Ueno
,
H.
,
Honma
,
H.
,
Wakao
,
Y.
, and
Mori
,
M.
,
2000
, “
Development of LPG SI and CI Engine for Heavy Duty Vehicles
,”
Proceedings of the Seoul 2000 FISITA World Automotive Congress
,
Seoul
,
June 12
, pp.
394
403
.
28.
Goto
,
S.
,
Lee
,
D.
,
Shakal
,
J.
,
Harayama
,
N.
,
Honjyo
,
F.
, and
Ueno
,
H.
,
1999
, “
Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles
,”
SAE
Technical Paper 1999-01-1513.
29.
Lee
,
D.
,
Goto
,
S.
,
Kim
,
I.
, and
Motohashi
,
M.
,
1999
, “
Spectroscopic Investigation of the Combustion Process in an LPG Lean-Burn SI Engine
,”
SAE
Technical Paper 1999-01-3510.
30.
Lee
,
D.
,
Shakal
,
J.
,
Goto
,
S.
,
Ishikawa
,
H.
,
Ueno
,
H.
, and
Harayama
,
N.
,
1999
, “
Observation of Flame Propagation in an LPG Lean Burn SI Engine
,”
SAE
Technical Paper 1999-01-0570.
31.
Donateo
,
T.
,
de Risi
,
A.
, and
Laforgia
,
D.
,
2012
, “
On the Computer-Aided Conversion of a Diesel Engine to CNG-Dedicated or Dual Fuel Combustion Regime
,”
Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference
,
Torino, Piemonte, Italy
,
May 6–9
, No. ICES2012-81090, pp.
933
943
.
32.
Jiao
,
Y.
,
Zhang
,
H.
,
Yang
,
Z.
,
Zhang
,
Z.
, and
Si
,
P.
,
2008
, “
Multi-Dimensional Simulation of Combustion Process in Ignition Nature Gas Engine
,”
J. Therm. Sci. Technol.
,
7
(
4
), pp.
360
366
.
33.
Yin
,
Y.
,
Liu
,
S.
, and
Tian
,
Y.
,
2010
, “
Numerical Simulation for the Combustion Process of Spark Ignition CNG Engine
,”
Intern. Combust. Engine Powerplant
,
3
(
1
), pp.
008
.
34.
Langness
,
C.
, and
Depcik
,
C.
,
2016
, “
Statistical Analyses of CNG Constituents on Dual-Fuel Compression Ignition Combustion
,”
SAE
Technical Paper 2016-01-0802.
35.
Langness
,
C.
,
Mattson
,
J.
, and
Depcik
,
C.
,
2017
, “
Moderate Substitution of Varying Compressed Natural Gas Constituents for Assisted Diesel Combustion
,”
Combust. Sci. Technol.
,
189
(
8
), pp.
1354
1372
.
36.
Reyes
,
M.
,
Tinaut
,
F. V.
,
Gimenez
,
B.
, and
Perez
,
A.
,
2014
, “
Characterization of Cycle-to-Cycle Variations in a Natural Gas Spark Ignition Engine
,”
Fuel
,
140
(
1
), pp.
752
761
.
37.
Kim
,
K.
,
Kim
,
H.
,
Kim
,
B.
, and
Lee
,
K.
,
2009
, “
Effect of Natural Gas Composition on the Performance of a CNG Engine
,”
Oil Gas Sci. Technol.—Rev. IFP
,
64
(
2
), pp.
199
206
.
38.
Burcat
,
A.
,
Scheller
,
K.
, and
Lifshitz
,
A.
,
1971
, “
Shock-Tube Investigation of Comparative Ignition Delay Times for C1-C5 Alkanes
,”
Combust. Flame
,
16
(
1
), pp.
29
33
.
39.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
431
460
.
40.
McTaggart-Cowan
,
G. P.
,
Rogak
,
S. N.
,
Munshi
,
S. R.
,
Hill
,
P. G.
, and
Bushe
,
W. K.
,
2010
, “
The Influence of Fuel Composition on a Heavy-Duty, Natural-Gas Direct-Injection Engine
,”
Fuel
,
89
(
3
), pp.
752
759
.
41.
Kreutzer
,
C. J.
,
Olsen
,
D. B.
, and
Bremmer
,
R. J.
,
2011
, “
Evaluation of a Lean-Burn Natural Gas Engine Operating on Variable Methane Number Fuel
,”
Proceedings of the ASME 2011 Internal Combustion Engine Division Fall Technical Conference
,
Morgantown, WV
,
Oct. 2–5
, No. ICEF2011-60071, pp.
159
166
.
You do not currently have access to this content.