Abstract

In this paper, we aim to develop a comprehensive ignition model for three-dimensional (3D) computational fluid dynamics (CFD) combustion modeling in spark-ignited (SI) engines. In the proposed model, we consider the following aspects separately to model the spark ignition process comprehensively. An electrical circuit is solved for calculation of the energy transferred to the spark plasma channel. The spark itself is represented by computational particles for monitoring its motion and ignitability. Heat diffusion from the spark toward the surrounding mixture is calculated with a one-dimensional (1D) model, resulting in the temperature obtained at the surface of the spark channel. Based on the calculated temperature and interpolated pressure and local mixture composition, an instantaneous ignition delay time is read from tabulated values for every particle representing the spark channel. The final ignitability criterion is defined by a precursor calculated with a zero-dimensional (0D) model, which accounts for the history of changes in spark surface temperature and local mixture properties. As soon as the precursor reaches a threshold value for a given spark channel particle, a flame kernel is introduced at a position of the particle. Flame propagation is generally treated by the G-equation combustion model. Validation is performed by measurements of the spark discharge process in high-velocity flow field and single-cylinder AVL research engine. We demonstrate that the proposed model can correctly reproduce the electrical circuit, spark channel dynamics, and overall engine performance.

References

1.
Drake
,
M. C.
, and
Haworth
,
D. C.
,
2007
, “
Advanced Gasoline Engine Development Using Optical Diagnostics and Numerical Modeling
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
99
124
. 10.1016/j.proci.2006.08.120
2.
Drake
,
M. C.
,
Fansler
,
T. D.
, and
Lippert
,
A. M.
,
2005
, “
Stratified-Charge Combustion: Modeling and Imaging of a Spray-Guided Direct-Injection Spark-Ignition Engine
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2683
2691
. 10.1016/j.proci.2004.07.028
3.
Gubba
,
S. R.
,
Ravichandra
,
S. J.
,
Pasunurthi
,
S. S.
,
Wijeyakulasuriya
,
S. D.
,
Primus
,
R. J.
,
Klingbeil
,
A.
, and
Finney
,
C. E. A.
,
2018
, “
Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082205
. 10.1115/1.4039630
4.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy—A Pathway for Premixed Compression Ignition High Load Operation
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082201
. 10.1115/1.4039548
5.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2017
, “
Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
. 10.1115/1.4038464
6.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
. 10.1115/1.4040063
7.
Pan
,
M.
,
Wei
,
H.
, and
Feng
,
D.
,
2018
, “
Effects of Exhaust Gas Recirculation on Knock Intensity of a Downsized Gasoline Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
011101
. 10.1115/1.4040528
8.
Pischinger
,
S.
, and
Heywood
,
J. B.
,
1988
, “
A Study of Flame Development and Engine Performance With Breakdown Ignition Systems in a Visualization Engine
,” SAE Paper No. 880518.
9.
Thiele
,
M.
,
Selle
,
S.
,
Riedel
,
U.
,
Warnatz
,
J.
, and
Maas
,
U.
,
2000
, “
Numerical Simulation of Spark Ignition Including Ionization
,”
Proc. Combust. Inst.
,
28
, pp.
1177
1185
. 10.1016/S0082-0784(00)80328-8
10.
Dahms
,
R.
,
Drake
,
M. C.
,
Fansler
,
T. D.
,
Kuo
,
T. W.
, and
Peters
,
N.
,
2011
, “
Understanding Ignition Processes in Sprayguided Gasoline Engines Using Highspeed Imaging and the Extended Sparkignition Model SparkCIMM. Part A: Spark Channel Processes and the Turbulent Flame Front Propagation
,”
Combust. Flame
,
158
(
11
), pp.
2229
2244
. 10.1016/j.combustflame.2011.03.012
11.
Suzuki
,
K.
,
Uehara
,
K.
,
Murase
,
E.
, and
Nogawa
,
S.
,
2016
,
Study of Ignitability in Strong Flow Field
,
CISGE
,
Springer
, pp.
69
84
.
12.
Song
,
J.
, and
Sunwoo
,
M.
,
2000
, “
A Modeling and Experimental Study of Initial Flame Kernel Development and Propagation in SI Engines
,” SAE Paper No. 2000-01-0960.
13.
Dahms
,
R.
,
Fansler
,
T. D.
,
Drake
,
M. C.
,
Kuo
,
T. W.
,
Lippert
,
A. M.
, and
Peters
,
N.
,
2009
, “
Modeling Ignition Phenomena in Spray-Guided Spark-Ignited Engines
,”
Proc. Combust. Inst.
,
32
, pp.
2743
2750
. 10.1016/j.proci.2008.05.052
14.
Fan
,
L.
,
Li
,
G.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,” SAE Paper No. 1999-01-0175.
15.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1
), pp.
1
15
. 10.1016/j.combustflame.2005.12.007
16.
Falfari
,
S.
, and
Bianchi
,
G. M.
,
2007
, “
Development of an Ignition Model for S.I. Engines Simulation
,” SAE Paper No. 2007-01-01.
17.
Colin
,
O.
, and
Duclos
,
J.-M.
,
2001
, “
Arc and Kernel Tracking Ignition Model for 3D Spark-Ignition Engine Calculations
,” COMODIA 2001.
18.
Schäfer
,
L.
,
Linse
,
D.
,
Durst
,
B.
, and
Hasse
,
C.
,
2016
, “
3D CFD Simulation of the Spark Ignition Process Under the Consideration of Spark Channel Deflection, Diffusion Effects, Curvature and Detailed Chemical Kinetics
,”
Internationaler Motorenkongress 2016, Proceedings
,
Baden-Baden, Germany
,
Feb. 23–24
, pp.
349
372
.
19.
Mikula
,
K.
, and
Urbán
,
J.
,
2014
, “
A New Tangentially Stabilized 3D Curve Evolution Algorithm and its Application in Virtual Colonoscopy
,”
Adv. Comput. Math.
,
40
(
4
), pp.
819
837
. 10.1007/s10444-013-9328-x
20.
Kim
,
J.
, and
Anderson
,
R. W.
,
1995
, “
Spark Anemometry of Bulk Gas Velocity at the Plug Gap of a Firing Engine
,” SAE Paper No. 952459.
21.
Heywood
,
J. B.
,
1998
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
22.
Kortschik
,
C.
,
Honnet
,
S.
, and
Peters
,
N.
,
2005
, “
Influence of Curvature on the Onset of Autoignition in a Corrugated Counterflow Mixing Field
,”
Combust. Flame
,
142
, pp.
140
152
. 10.1016/j.combustflame.2005.02.012
23.
Maly
,
R.
, and
Vogel
,
M.
,
1978
, “
Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark
,”
Proc. Combust. Inst.
,
17
(
1
), pp.
821
831
. 10.1016/S0082-0784(79)80079-X
24.
Herweg
,
R.
, and
Maly
,
R.
,
1992
, “
A Fundamental Model for Flame Kernel Formation in SI Engines
,” SAE Paper No. 922243.
25.
Verhoeven
,
D.
,
1997
, “
Spark Heat Transfer Measurements in Flowing Gases
,”
Oil Gas Sci. Technol.
,
52
(
4
), pp.
453
464
.
26.
Lafossas
,
F. A.
,
Castagne
,
M.
,
Dumas
,
J. P.
, and
Henriot
,
S.
,
2002
, “
Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD Code
,” SAE Paper No. 2002-01-2701.
27.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
28.
Ewald
,
J.
,
2006
, “
A Level Set Based Flamelet Model for the Prediction of Combustion in Homogeneous Charge and Direct Injection Spark Ignition Engines
,” Ph.D. thesis,
RWTH Aachen University
,
Aachen, Germany
.
29.
Hahn
,
J.
,
Mikula
,
K.
,
Frolkovic
,
P.
, and
Basara
,
B.
,
2017
,
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
,
Springer International Publishing
,
New York
, pp.
81
89
.
30.
Hahn
,
J.
,
Mikula
,
K.
,
Frolkovic
,
P.
, and
Basara
,
B.
,
2017
, “
Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh
,”
J. Sci. Comput.
,
72
(
1
), pp.
442
465
. 10.1007/s10915-017-0364-4
31.
Kufferath
,
A.
, and
Storch
,
A.
,
2009
, “
Potenziale des Zndsystems beim strahlgefhrten Brennverfahren mit Piezo-Einspritztechnik
,” 12. Tagung Der Arbeitsprozess Des Verbrennungsmotors, pp.
96
119
.
You do not currently have access to this content.