Abstract

The experience of leading countries in distributed energy systems (e.g., Scandinavian countries) shows that district cooling systems are highly beneficial techno-economic-environmentally by facilitating the use of waste heat resources, solar energy, etc. for cold supply at large scales. This study proposes the optimal development of a novel district cooling design equipped with a large-scale cold storage unit and utilizing the exhaust waste heat of an energy plant in a case study in Saudi Arabia. The optimal configuration of the hybrid system, the sizing of its components, and operating conditions are found using multi-objective optimization techniques based on the genetic algorithm method and a creative performance assessment index. Then, the feasibility of this optimized proposal is investigated through comprehensive thermodynamic and economic analyses. The results show that a district cooling system can surely cope with the harsh climate condition of the case study and provide the required interior comfort conditions. The energy and exergy efficiencies of the system can be as high as 62% and 53% using an absorption chiller utilizing a power plant’s waste heat along with a storage tank for peak shaving. The levelized cost of cooling of the system can be 28 USD/MW h, by which the payback period will be only 8 years.

References

1.
Arabkoohsar
,
A.
, and
Alsagri
,
A. S.
,
2020
, “
Thermodynamic Analysis of Ultralow-Temperature District Heating System With Shared Power Heat Pumps and Triple-Pipes
,”
Energy
,
194
, p.
116918
.
2.
Arabkoohsar
,
A.
,
Khosravi
,
M.
, and
Alsagri
,
A. S.
,
2019
, “
CFD Analysis of Triple-Pipes for a District Heating System With Two Simultaneous Supply Temperatures
,”
Int. J. Heat Mass Transfer
,
141
, pp.
432
443
.
3.
Arabkoohsar
,
A.
, and
Alsagri
,
AS.
,
2020
, “
A New Generation of District Heating System With Neighborhood-Scale Heat Pumps and Advanced Pipes, a Solution for Future Renewable-Based Energy Systems
,”
Energy
,
193
. .
Article 116781
.
4.
Gang
,
W.
,
Wang
,
S.
,
Xiao
,
L.
, and
Gao
,
D.
,
2015
, “
District Cooling Systems: Technology Integration, System Optimization, Challenges and Opportunities for Applications
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
253
264
.
5.
Werner
,
S.
,
2017
, “
International Review of District Heating and Cooling
,”
Energy
,
137
, pp.
617
631
.
6.
Inayat
,
A.
, and
Raza
,
M.
,
2019
, “
District Cooling System Via Renewable Energy Sources: A Review
,”
Renew. Sustain. Energy Rev.
,
107
, pp.
360
373
.
7.
Lake
,
A.
,
Rezaie
,
B.
, and
Beyerlein
,
S.
,
2017
, “
Review of District Heating and Cooling Systems for a Sustainable Future
,”
Renew. Sustain. Energy Rev.
,
67
, pp.
417
425
.
8.
Tredinnick
,
S.
, and
Phetteplace
,
G.
,
2016
, “
8—District Cooling, Current Status and Future Trends
,”
Woodhead Publishing Series in Energy
, R. B. T.-A. D. H. and C. (DHC) S. Wiltshire, ed.,
Woodhead Publishing
,
Oxford
, pp.
167
188
.
9.
Tsigkas
,
I.
, and
Panaras
,
G.
,
2020
, “
District Cooling Application on an Existing District Heating Infrastructure: Technologies and Potential
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
410
(
1
), pp.
1
9
.
10.
Nuorkivi
,
A.
,
2016
, “
2—District Heating and Cooling Policies Worldwide
,”
Woodhead Publishing Series in Energy
, R. B. T.-A. D. H. and C. (DHC) S. Wiltshire, ed.,
Woodhead Publishing
,
Oxford
, pp.
17
41
.
11.
Palm
,
J.
, and
Gustafsson
,
S.
,
2018
, “
Barriers to and Enablers of District Cooling Expansion in Sweden
,”
J. Cleaner Prod.
,
172
, pp.
39
45
.
12.
Tian
,
Z.
,
Zhang
,
S.
,
Deng
,
J.
,
Fan
,
J.
,
Huang
,
J.
,
Kong
,
W.
,
Perers
,
B.
, and
Furbo
,
S.
,
2019
, “
Large-Scale Solar District Heating Plants in Danish Smart Thermal Grid: Developments and Recent Trends
,”
Energy Convers. Manage.
,
189
, pp.
67
80
.
13.
von Rhein
,
J.
,
Henze
,
G. P.
,
Long
,
N.
, and
Fu
,
Y.
,
2019
, “
Development of a Topology Analysis Tool for Fifth-Generation District Heating and Cooling Networks
,”
Energy Convers. Manage.
,
196
, pp.
705
716
.
14.
Gros
,
A.
,
Bozonnet
,
E.
,
Inard
,
C.
, and
Musy
,
M.
,
2016
, “
A New Performance Indicator to Assess Building and District Cooling Strategies
,”
Procedia Eng.
,
169
, pp.
117
124
.
15.
Ayou
,
D. S.
, and
Eveloy
,
V.
,
2020
, “
Energy, Exergy and Exergoeconomic Analysis of an Ultra Low-Grade Heat-Driven Ammonia-Water Combined Absorption Power-Cooling Cycle for District Space Cooling, Sub-Zero Refrigeration, Power and LNG Regasification
,”
Energy Convers. Manage.
,
213
, p.
112790
.
16.
Alghool
,
D. M.
,
Elmekkawy
,
T. Y.
,
Haouari
,
M.
, and
Elomri
,
A.
,
2020
, “
Optimization of Design and Operation of Solar Assisted District Cooling Systems
,”
Energy Convers. Manage.
,
6
, p.
100028
.
17.
Nova-Rincon
,
A.
,
Sochard
,
S.
,
Serra
,
S.
, and
Reneaume
,
J.-M.
,
2020
, “
Dynamic Simulation and Optimal Operation of District Cooling Networks Via 2D Orthogonal Collocation
,”
Energy Convers. Manage.
,
207
, p.
112505
.
18.
The World’s Largest CHW Plant: Pearl of Qatar
” [Internet], https://www.csemag.com/articles/the-worlds-largest-chw-plant-pearl-of-qatar/
19.
Kuwait's District Cooling System
, district energy.org/home
20.
Dominković
,
D. F.
,
Bin Abdul Rashid
,
K. A.
,
Romagnoli
,
A.
,
Pedersen
,
A. S.
,
Leong
,
K. C.
,
Krajačić
,
G.
, and
Duić
,
N.
,
2017
, “
Potential of District Cooling in Hot and Humid Climates
,”
Appl. Energy
,
208
, pp.
49
61
.
21.
Gang
,
W.
,
Wang
,
S.
,
Xiao
,
F.
, and
Gao
,
D.
,
2015
, “
Performance Assessment of District Cooling System Coupled With Different Energy Technologies in Subtropical Area
,”
Energy Procedia
,
75
, pp.
1235
1241
.
22.
Chow
,
T. T.
,
Au
,
W. H.
,
Yau
,
R.
,
Cheng
,
V.
,
Chan
,
A.
, and
Fong
,
K. F.
,
2004
, “
Applying District-Cooling Technology in Hong Kong
,”
Appl. Energy
,
79
(
3
), pp.
275
289
.
23.
Wu
,
X.
, and
Chen
,
Z.
,
2017
, “
Performance Analysis of a District Cooling System Based on Operation Data
,”
Procedia Eng.
,
205
, pp.
3117
3122
.
24.
Saudi Arabia District Cooling Sees Bright Future
” [Internet], https://www.utilities-me.com/article-4365-saudi-arabia-district-cooling-sees-bright-future
25.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L. C.
,
2003
, “
Design and Construction of a LiBr–Water Absorption Machine
,”
Energy Convers. Manage.
,
44
(
15
), pp.
2483
2508
.
26.
Alsagri
,
A. S.
,
2020
, “
Design and Dynamic Simulation of a Photovoltaic Thermal-Organic Rankine Cycle Considering Heat Transfer Between Components
,”
Energy Convers. Manage.
,
225
, p.
113435
.
27.
ASHRAE
,
2017
,
Ashrae Handbook Fundamentals
,
I-P Edition, W. Stephen Comstock
.
28.
Kemna
,
R.
, and
Acedo
,
J.
,
2014
, “
Average EU Building Heat Load for HVAC Equipment
,”
Final Report, Framework Contract ENER/C3/412-2010, August
.
29.
Integrated Environmental Solutions
,
2010
, “
Apache-Tables User Guide IES Virtual Environment 6.4
,” pp.
1
48
.
30.
Lund
,
H.
,
Duic
,
N.
,
Østergaard
,
P. A.
, and
Mathiesen
,
B. V.
,
2016
, “
Smart Energy Systems and 4th Generation District Heating
,”
Energy
,
110
, pp.
1
4
.
32.
33.
Alsagri
,
A. S.
,
Arabkoohsar
,
A.
,
Khosravi
,
M.
, and
Alrobaian
,
A. A.
,
2019
, “
Efficient and Cost-Effective District Heating System With Decentralized Heat Storage Units, and Triple-Pipes
,”
Energy
,
188
, p.
116035
.
34.
Razmi
,
A. R.
,
Arabkoohsar
,
A.
, and
Nami
,
H.
,
2020
, “
Thermoeconomic Analysis and Multi-Objective Optimization of a Novel Hybrid Absorption/Recompression Refrigeration System
,”
Energy
,
210
(
1
), p.
118559
.
35.
Incropera
,
F. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
36.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2010
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 6th ed.,
Butterworth-Heinemann
,
Burlington, MA
.
37.
Arabkoohsar
,
A.
,
Dremark-Larsen
,
M.
,
Lorentzen
,
R.
, and
Andresen
,
G. B.
,
2017
, “
Subcooled Compressed Air Energy Storage System for Coproduction of Heat, Cooling and Electricity
,”
Appl. Energy
,
205
, pp.
602
614
.
38.
Arabkoohsar
,
A.
,
2019
, “
Non-Uniform Temperature District Heating System With Decentralized Heat Pumps and Standalone Storage Tanks
,”
Energy
,
170
, pp.
931
941
.
39.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons
.
40.
Alsagri
,
A. S.
,
2020
, “
Energy Performance Enhancement of Solar Thermal Power Plants by Solar Parabolic Trough Collectors and Evacuated Tube Collectors-Based Preheating Units
,”
Int. J. Energy Res.
, pp.
1
15
.
41.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Gadalla
,
M.
,
2019
, “
Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051006
.
42.
Moran
,
M. J.
,
1999
, “Fundamentals of Exergy Analysis and Exergy-Aided Thermal Systems Design,”
Thermodynamic Optimization of Complex Energy Systems
,
Springer
,
New York
, pp.
73
92
.
43.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Aljabr
,
A.
,
2018
, “
Thermodynamic Analysis and Multi-Objective Optimizations of a Combined Recompression sCO2 Brayton Cycle: tCO2 Rankine Cycles for Waste Heat Recovery
,” No. 52118, p.
V08AT10A044
.
44.
Alsagri
,
A. S.
,
Alrobaian
,
A. A.
, and
Nejlaoui
,
M.
,
2021
, “
Techno-Economic Evaluation of an Off-Grid Health Clinic Considering the Current and Future Energy Challenges: A Rural Case Study
,”
Renew. Energy
,
169
, pp.
34
52
.
45.
Arabkoohsar
,
A.
,
Behzadi
,
A.
, and
Alsagri
,
A. S.
,
2021
, “
Techno-Economic Analysis and Multi-Objective Optimization of a Novel Solar-Based Building Energy System; an Effort to Reach the True Meaning of Zero-Energy Buildings
,”
Energy Convers. Manage.
,
232
, p.
113858
.
46.
Nami
,
H.
,
Anvari-Moghaddam
,
A.
,
Arabkoohsar
,
A.
, and
Razmi
,
A. R.
,
2020
, “
4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant With Flue Gas Condensation
,”
Sustainability
,
12
(
22
), p.
9449
.
47.
Hosseini
,
S. S.
,
Mehrpooya
,
M.
,
Alsagri
,
A. S.
, and
Alrobaian
,
A. A.
,
2019
, “
Introducing, Evaluation and Exergetic Performance Assessment of a Novel Hybrid System Composed of MCFC, Methanol Synthesis Process, and a Combined Power Cycle
,”
Energy Convers. Manage.
,
197
, p.
111878
.
48.
Coppieters
,
T.
, and
Blondeau
,
J.
,
2019
, “
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations
,”
Energies
,
12
(
12
), p.
2337
.
49.
Bespalov
,
V.
,
Bespalov
,
V.
, and
Melnikov
,
D.
,
2016
, “
Evaluation of Heat Transfer Coefficients During the Water Vapor Condensation Contained in the Flue Gas
,”
EPJ Web Conf.
,
110
, pp.
1
5
.
50.
Arabkoohsar
,
A.
, and
Sadi
,
M.
,
2020
, “
A Solar PTC Powered Absorption Chiller Design for Co-Supply of District Heating and Cooling Systems in Denmark
,”
Energy
,
193
. .
Article 116789
.
51.
Mohammed
,
R. H.
,
Alsagri
,
A. S.
, and
Wang
,
X.
,
2020
, “
Performance Improvement of Supercritical Carbon Dioxide Power Cycles Through Its Integration With Bottoming Heat Recovery Cycles and Advanced Heat Exchanger Design: A Review
,”
Int. J. Energy Res.
, pp.
1
28
.
52.
Fabricius
,
M.
,
Tarp
,
D. Ø.
,
Rasmussen
,
T. W.
, and
Arabkoohsar
,
A.
,
2020
, “
Utilization of Excess Production of Waste-Fired chp Plants for District Cooling Supply, an Effective Solution for a Serious Challenge
,”
Energies
,
13
(
13
), p.
3319
.
53.
Arabkoohsar
,
A.
, and
Andresen
,
G. B.
,
2019
, “
Design and Optimization of a Novel System for Trigeneration
,”
Energy
,
168
, pp.
247
260
.
54.
Farzaneh-Gord
,
M.
,
Arabkoohsar
,
A.
,
Bayaz
,
M. D. D.
, and
Khoshnevis
,
A. B.
,
2013
, “
New Method of Solar Energy Application in Greenhouses to Decrease Fuel Consumption
,”
Int. J. Agric. Biol. Eng.
,
6
(
4
), pp.
64
75
.
55.
56.
Lizarte
,
R.
,
Izquierdo
,
M.
,
Marcos
,
J. D.
, and
Palacios
,
E.
,
2013
, “
Experimental Comparison of Two Solar-Driven Air-Cooled LiBr/H2O Absorption Chillers: Indirect Versus Direct Air-Cooled System
,”
Energy Build.
,
62
, pp.
323
334
.
You do not currently have access to this content.