Abstract

The sea is an important renewable energy resource for its extension and the power conveyed by waves, currents, tides, and thermal gradients. Amongst these physical phenomena, sea waves are the source with the highest energy density and may contribute to fulfilling the global increase of power demand. Despite the potential of sea waves, their harnessing is still a technological challenge. Oscillating water column systems operating with Wells turbines represent one of the most straightforward and reliable solutions for the optimal exploitation of this resource. An analytical model and computational fluid dynamics models were developed to evaluate the functioning of monoplane isolated Wells turbines. For the former modeling typology, a blade element momentum code relying on the actuator disk theory was applied, considering the rotor as a set of airfoils. For the latter modeling typology, a three-dimensional multi-block technique was implemented to create the computational domain with a fully mapped mesh composed of hexahedral elements. The employment of circumferential periodic boundary conditions allowed for the reduction of computational power and time. The models use Reynolds-averaged Navier-Stokes (RANS) or u-RANS schemes with a multiple reference frame approach or the u-RANS formulation with a sliding mesh approach. The achieved results were compared with analytical and experimental literature data for validation. All the developed models showed good agreement. The analytical model is suitable for a fast prediction of the turbine operation on a wide set of configurations during the first design stages, while the computational fluid dynamics (CFD) models are indicated for the further investigation of the selected configurations.

References

1.
Mork
,
G.
,
Barstow
,
S.
,
Kabuth
,
A.
, and
Pontes
,
T. M.
,
2010
, “
Assessing the Global Wave Energy Potential
,”
Proceedings of the 29th International Conference on Ocean, Offshore Mechanics and Arctic Engineering
,
Shanghai, China
,
June 6–11
.
2.
Gunn
,
K.
, and
Stock-Williams
,
C.
,
2012
, “
Quantifying the Global Wave Power Resource
,”
Renewable Energy
,
44
, pp.
296
304
.
4.
Curran
,
R.
,
Whittaker
,
T. J. T.
, and
Stewart
,
T. P.
,
1998
, “
Aerodynamic Conversion of Ocean Power From Wave to Wire
,”
Energy Convers. Manage.
,
39
(
16–18
), pp.
1919
1929
.
5.
Falcão
,
A. F. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.
6.
Melikoglu
,
M.
,
2018
, “
Current Status and Future of Ocean Energy Sources: A Global Review
,”
Ocean Eng.
,
148
, pp.
563
573
.
7.
Falcão
,
A. F. O.
,
Henriques
,
J.
, and
Gato
,
L.
,
2018
, “
Self-rectifying Air Turbines for Wave Energy Conversion: A Comparative Analysis
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
1231
1241
.
8.
Wells
,
A. A.
,
1976
, “Fluid Driven Rotary Transducer,” British Patent No. 1595700.
9.
Gato
,
L. M. C.
, and
Falcão
,
A. F. O.
,
1984
, “
On the Theory of the Wells Turbine
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
628
633
.
10.
Inoue
,
M.
,
Kaneko
,
K.
,
Setoguchi
,
T.
, and
Shimamoto
,
K.
,
1986
, “
Studies on Wells Turbine for Wave Power Generator
,”
J. Soc. Mech. Eng.
,
29
(
250
), pp.
1177
1182
.
11.
Maeda
,
H.
,
Santhakumar
,
S.
,
Setoguchi
,
T.
,
Takao
,
M.
,
Kinoue
,
Y.
, and
Kaneko
,
K.
,
1999
, “
Performance of an Impulse Turbine With Fixed Guide Vanes for Wave Power Conversion
,”
Renewable Energy
,
17
(
4
), pp.
533
547
.
12.
Setoguchi
,
T.
,
Santhakumar
,
S.
,
Maeda
,
H.
,
Takao
,
M.
, and
Kaneko
,
K.
,
2001
, “
A Review of Impulse Turbines for Wave Energy Conversion
,”
Renewable Energy
,
23
(
2
), pp.
261
292
.
13.
Setoguchi
,
T.
,
Takao
,
M.
,
Santhakumar
,
S.
, and
Kaneko
,
K.
,
2004
,
“Study of an Impulse Turbine for Wave Power Conversion: Effects of Reynolds Number and Hub-to-Tip Ratio on Performance”
,
ASME J. Offshore Mech. Arct. Eng.
,
126
(
2
), pp.
137
140
.
14.
Raghunathan
,
S.
,
Tan
,
C. P.
, and
Ombaka
,
O. O.
,
1985
, “
Performance of the Wells Self-rectifying Air Turbine
,”
Aeronaut. J.
,
89
, pp.
369
379
.
15.
Raghunathan
,
S.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
1991
, “
Aerodynamics of Monoplane Wells Turbine—A Review
,”
Proceedings of the First International Offshore and Polar Engineering Conference
,
Edinburgh, Scotland
,
Aug. 11–16
, Vol. 1, pp.
370
379
.
16.
Raghunathan
,
S.
,
1995
, “
A Methodology for Wells Turbine Design for Wave Energy Conversion
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
209
(
3
), pp.
221
232
.
17.
Raghunathan
,
S.
,
1995
, “
The Wells Air Turbine for Wave Energy Conversion
,”
Prog. Aerosp. Sci.
,
31
(
4
), pp.
335
386
.
18.
Brito-Melo
,
A.
,
Gato
,
L. M. C.
, and
Sarmento
,
A. J. N. A.
,
2002
, “
Analysis of Wells Turbine Design Parameters by Numerical Simulation of the OWC Performance
,”
Ocean Eng.
,
29
(
12
), pp.
1463
1477
.
19.
Heikal
,
H. A.
,
Hafiz
,
A. A.
,
Bayomi
,
N. N.
, and
Ahmed
,
M. H.
,
2003
, “
Theoretical and Experimental Investigation on the Wells Turbine Performance
,”
Proceedings of the 7th Conference on Theoretical and Applied Mechanics
,
Cairo, Egypt
,
Mar. 11–13
.
20.
Torresi
,
M.
,
Camporeale
,
S. M.
,
Pascazio
,
G.
, and
Fortunato
,
B.
,
2004
, “
Fluid Dynamic Analysis of the Solidity of a Wells Turbine
,”
Proceedings of the 59th Annual Conference ATI
,
Genova, Italy
,
Sept. 14–17
.
21.
Torresi
,
M.
,
Camporeale
,
S. M.
,
Strippoli
,
P. D.
, and
Pascazio
,
G.
,
2008
, “
Accurate Numerical Simulation of a High Solidity Wells Turbine
,”
Renewable Energy
,
33
(
4
), pp.
735
747
.
22.
Taha
,
Z.
,
Sugiyono
, and
Sawada
,
T.
,
2010
, “
A Comparison of Computational and Experimental Results of Wells Turbine Performance for Wave Energy Conversion
,”
Appl. Ocean Res.
,
32
(
1
), pp.
83
90
.
23.
Taha
,
Z.
,
Sugiyono
,
Tuan Ya
,
T. M. Y. S.
, and
Sawada
,
T.
,
2011
, “
Numerical Investigation on the Performance of Wells Turbine With Non-Uniform Tip Clearance for Wave Energy Conversion
,”
Appl. Ocean Res.
,
33
(
4
), pp.
321
331
.
24.
Torresi
,
M.
,
Pranzo
,
D.
,
Camporeale
,
S. M.
, and
Pascazio
,
G.
,
2011
, “
Improved Design of High Solidity Wells Turbine
,”
Proceedings of the 9th European Wave and Tidal Energy Conference
,
Southampton, UK
,
Sept. 5–9
.
25.
Starzmann
,
R.
, and
Carolus
,
T. H.
,
2011
, “
Effect of Design Parameters on Aeroacoustic and Aerodynamic Performance of Wells Turbines
,”
Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
ASME
.
26.
Bassetti
,
M.
,
Corsini
,
A.
,
Delibra
,
G.
, and
Rispoli
,
F.
,
2014
, “
Progetto e Prima Verifica Operativa di una μ-Turbina Wells per il Mar Mediterraneo
,” ENEA, (in English).
27.
Suchithra
,
R.
,
Ezhilsabareesh
,
K.
, and
Samad
,
A.
,
2019
, “
Development of a Reduced Order Wave to Wire Model of an OWC Wave Energy Converter for Control System Analysis
,”
Ocean Eng.
,
172
, pp.
614
628
.
28.
Henriques
,
J. C. C.
,
Portillo
,
J. C. C.
,
Sheng
,
W.
,
Gato
,
L. M. C.
, and
Falcão
,
A. F. O.
,
2019
, “
Dynamics and Control of Air Turbines in Oscillating-Water-Column Wave Energy Converters: Analyses and Case Study
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
571
589
.
29.
Ciappi
,
L.
,
Cheli
,
L.
,
Simonetti
,
I.
,
Bianchini
,
A.
,
Talluri
,
L.
,
Cappietti
,
L.
, and
Manfrida
,
G.
,
2020
, “
Analytical Models of Oscillating Water Column Systems Operating With Air Turbines in the Mediterranean Sea
,”
Proceedings of the 15th Conference on Sustainable Development of Energy, Water and Environment Systems
,
Cologne, Germany
,
Sept. 1–5
.
30.
Ciappi
,
L.
,
Cheli
,
L.
,
Simonetti
,
I.
,
Bianchini
,
A.
,
Manfrida
,
G.
, and
Cappietti
,
L.
,
2020
, “
Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots
,”
Energies
,
13
(
21
), p.
5582
.
31.
Ciappi
,
L.
,
Cheli
,
L.
,
Simonetti
,
I.
,
Bianchini
,
A.
,
Talluri
,
L.
,
Cappietti
,
L.
, and
Manfrida
,
G.
,
2021
, “
Wave-to-Wire Models of Wells and Impulse Turbines for Oscillating Water Column Wave Energy Converters Operating in the Mediterranean Sea
,”
Energy
,
238, Part A
, p.
121585
.
32.
Bassetti
,
M.
,
Corsini
,
A.
,
Delibra
,
G.
,
Faggiolati
,
G.
,
Piccinini
,
S.
,
Rispoli
,
F.
,
Romani
,
G.
,
Ruggeri
,
M.
, and
Tuccimei
,
E.
,
2012
, “
An Integrated Procedure for the Design of a Wells Turbine Developed for Mediterranean Operation
,”
Proceeding of the 7th European Seminar on Offshore Wind and Other Marine Renewable Energies in Mediterranean and European Seas
,
Rome, Italy
,
Sept. 5–7
.
33.
Horlock
,
J. H.
,
1973
,
Axial Flow Compressors, Fluid Mechanics and Thermodynamics
,
RE Krieger Publishing Company
,
Malabar, FL
.
34.
Dixon
,
S. L.
,
2005
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 5th ed.,
Elsevier
,
The Netherlands
.
35.
Raghunathan
,
S.
,
Tan
,
C. P.
, and
Ombaka
,
O. O.
,
1986
, “
Performance of Wells Self Rectifying Air Turbine
,”
J. R. Aeronaut. Soc.
,
89
, pp.
369
379
.
36.
Ciappi
,
L.
,
Stebel
,
M.
,
Smolka
,
J.
,
Cappietti
,
L.
, and
Manfrida
,
G.
,
2020
, “
Computational Fluid Dynamics Models of Wells Turbines for Oscillating Water Column Systems
,”
Proceedings of the 6th International Conference on Contemporary Problems of Thermal Engineering
,
Cracow, Poland
,
Sept. 21–25
.
37.
Setoguchi
,
T.
,
Kinoue
,
Y.
,
Kim
,
T. H.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2003
, “
Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
Renewable Energy
,
28
(
13
), pp.
2113
2127
.
38.
Halder
,
P.
,
Abdus
,
S.
, and
Thevenin
,
D.
,
2017
, “
Improved Design of a Wells Turbine for Higher Operating Range
,”
Renewable Energy
,
106
, pp.
122
134
.
39.
Hashem
,
I.
,
Abdel Hameed
,
H. S.
, and
Mohamed
,
M. H.
,
2018
, “
An Axial Turbine in an Innovative Oscillating Water Column (OWC) Device for Sea-Wave Energy Conversion
,”
Ocean Eng.
,
164
, pp.
536
562
.
40.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London, England
.
41.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
Am. Inst. Aeronaut. Astronaut. J.
,
32
(
8
), pp.
1598
1605
.
42.
ANSYS Incorporated
,
2019
, “ANSYS Fluent Theory Guide,” Southpointe 2600 ANSYS Drive, Canonsburg, PA.
You do not currently have access to this content.