Abstract

In this study, a novel solar tower-based gas turbine-driven multi-generation plant is proposed and analyzed in detail with energy, exergy, economic, and environmental impact analysis. A multiobjective optimization is performed by incorporating all performance indicators simultaneously. The proposed plant consists of an intercooling-regenerative-reheat solarized gas turbine cycle as the primary power cycle of a multi-generation plant for the first time. Two organic Rankine cycles are used to utilize waste heat of intercooling section and exhaust of gas turbine. To produce the multi-generation products of power, cooling, industrial process heating, fresh water, floor heating, green hydrogen, domestic hot water, hot air for food drying, and greenhouse heating, power cycles are integrated with a multi-effect desalination, a double-effect absorption refrigeration cycle, an electrolyzer, a drying hot air unit, a greenhouse heater, and an industrial process heater. A rigorous parametric analysis is performed to reveal the effects of variations of decision variables on the plant performance. At the optimum conditions, energy efficiency, exergy efficiency, average unit product exergy cost, and emission savings values are determined as 57.23%, 40.7%, 0.08315 $/kWh, and 948.7 kg CO2/h, respectively. Moreover, proposed plant can produce 1962 kW power and 3.353 kg/h hydrogen in addition to other utilities with a system cost rate of 0.05134 $/s and 3226 kW exergy destruction rate.

References

1.
International Energy Agency (IEA), Data and Statistics
,
2019
, https://www.iea.org/data-and-statistics?country=WORLD&fuel=CO2%20emissions&indicator= CO2BySector, Accessed March 15, 2021.
2.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
,
Exergy: Energy, Environment and Sustainable Development
, 2nd ed.,
Elsevier
,
Oxford
.
3.
Yuksel
,
Y. E.
,
Ozturk
,
M.
, and
Dincer
,
I.
,
2020
, “
Development of a Geothermal-Based Integrated Plant for Generating Clean Hydrogen and Other Useful Commodities
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092102
.
4.
Mohammadi
,
K.
,
Khanmohammadi
,
S.
,
Khorasanizadeh
,
H.
, and
Powell
,
K.
,
2020
, “
A Comprehensive Review of Solar Only and Hybrid Solar Driven Multigeneration Systems: Classifications, Benefits, Design and Prospective
,”
Appl. Energy
,
268
, p.
114940
.
5.
Kribus
,
A.
,
Zaibel
,
R.
,
Carey
,
D.
,
Segal
,
A.
, and
Karni
,
J.
,
1998
, “
A Solar-Driven Combined Cycle Power Plant
,”
Sol. Energy
,
62
(
2
), pp.
121
129
.
6.
Peng
,
S.
,
Hong
,
H.
,
Hongguang
,
J.
, and
Wang
,
Z.
,
2012
, “
An Integrated Solar Thermal Power System Using Intercooled Gas Turbine and Kalina Cycle
,”
Energy
,
44
(
1
), pp.
732
740
.
7.
Meas
,
M. R.
, and
Bello-Ochende
,
T.
,
2017
, “
Thermodynamic Design Optimization of an Open Air Recuperative Twin-Shaft Solar Thermal Brayton Cycle With Combined or Exclusive Reheating and Intercooling
,”
Energy Convers. Manag.
,
148
, pp.
770
784
.
8.
Ahmadi
,
M. H.
,
Nazari
,
M. A.
,
Ghasempour
,
R.
,
Pourfayaz
,
F.
,
Rahimzadeh
,
M.
, and
Ming
,
T.
,
2018
, “
A Review on Solar-Assisted Gas Turbines
,”
Energy Sci. Eng.
,
6
(
6
), pp.
658
674
.
9.
Hogerwaard
,
J.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2017
, “
Solar Energy Based Integrated System for Power Generation, Refrigeration and Desalination
,”
Appl. Therm. Eng.
,
121
, pp.
1059
1069
.
10.
Demir
,
M. E.
, and
Dincer
,
I.
,
2017
, “
Development of a Hybrid Solar Thermal System With TEG and PEM Electrolyzer for Hydrogen and Power Production
,”
Int. J. Hydrogen Energy
,
42
(
51
), pp.
30044
30056
.
11.
Yilmaz
,
F.
,
2018
, “
Thermodynamic Performance Evaluation of a Novel Solar Energy Based Multigeneration System
,”
Appl. Therm. Eng.
,
143
, pp.
429
437
.
12.
Pourrahmani
,
H.
, and
Moghimi
,
M.
,
2019
, “
Exergoeconomic Analysis and Multi-Objective Optimization of a Novel Continuous Solar-Driven Hydrogen Production System Assisted by Phase Change Material Thermal Storage System
,”
Energy
,
189
, p.
116170
.
13.
Keshavarzzadeh
,
A. H.
,
Ahmadi
,
P.
, and
Rosen
,
M. A.
,
2020
, “
Technoeconomic and Environmental Optimization of a Solar Tower Integrated Energy System for Freshwater Production
,”
J. Cleaner Prod.
,
270
, p.
121760
.
14.
Abbasi
,
H. R.
, and
Pourrahmani
,
H.
,
2020
, “
Multi-Objective Optimization and Exergoeconomic Analysis of a Continuous Solar-Driven System With PCM for Power, Cooling and Freshwater Production
,”
Energy Convers. Manag.
,
211
, p.
112761
.
15.
Yilmaz
,
F.
,
Ozturk
,
M.
, and
Selbas
,
R.
,
2020
, “
Development and Performance Analysis of a New Solar Tower and High Temperature Steam Electrolyzer Hybrid Integrated Plant
,”
Int. J. Hydrogen Energy
,
45
(
9
), pp.
5668
5686
.
16.
Ahmadi
,
A.
,
Ehyaei
,
M. A.
,
Jamali
,
D. H.
,
Despotovic
,
M.
,
Esmaeilion
,
F.
,
Abdalisousan
,
A.
, and
Hani
,
E. B.
,
2021
, “
Energy, Exergy, and Economic Analyses of Integration of Heliostat Solar Receiver to Gas and Air Bottom Cycles
,”
J. Cleaner Prod.
,
280
(
2
), p.
124322
.
17.
Colakoglu
,
M.
, and
Durmayaz
,
A.
,
2021
, “
Energy, Exergy and Environmental-Based Design and Multiobjective Optimization of a Novel Solar-Driven Multi-Generation System
,”
Energy Convers. Manag.
,
227
, p.
113603
.
18.
Schwarzbozl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespo
,
M. J. M.
,
Altwegg
,
P.
, and
Enrile
,
J.
,
2006
, “
Solar Gas Turbine Systems: Design, Cost and Perspectives
,”
Sol. Energy
,
80
(
10
), pp.
1231
1240
.
19.
Al-Mutaz
,
I. S.
, and
Wazeer
,
I.
,
2014
, “
Comparative Performance Evaluation of Conventional Multi-Effect Evaporation Desalination Processes
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1194
1203
.
20.
German Energy Agency, Process Heat in Industry and Commerce: Technology Solutions for Waste Heat Utilization and Renewable Provision
,
2016
, https://www.german-energy-solutions.de/GES/Redaktion/EN/Publications/GermanEnergy Solutions/process-heat-in-industry-and-commerce.pdf?__blob=publicationFile&v=2, Accessed March 15, 2021.
21.
F-Chart Software, Engineering Equation Solver (EES)
,
2021
, http://fchartsoftware.com/ees/, Accessed March 15, 2021.
22.
Khaliq
,
A.
,
Alharthi
,
M. A.
,
Alqaed
,
S.
,
Mokheimer
,
E. M. A.
, and
Kumar
,
R.
,
2020
, “
Analysis and Assessment of Tower Solar Collector Driven Trigeneration System
,”
ASME J. Sol. Energy
,
142
(
5
), p.
051003
.
23.
Palacios-Bereche
,
R.
,
Gonzales
,
R.
, and
Nebra
,
S. A.
,
2012
, “
Exergy Calculation of Lithium Bromide–Water Solution and Its Application in the Exergetic Evaluation of Absorption Refrigeration Systems LiBr-H2O
,”
Int. J. Energy Res.
,
36
(
2
), pp.
166
181
.
24.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
.
25.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
.
26.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
, “
Thermodynamic Modeling and Multi-Objective Evolutionary-Based Optimization of a New Multigeneration Energy System
,”
Energy Convers. Manag.
,
76
, pp.
282
300
.
27.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2017
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
28.
Cao
,
Y.
, and
Parikhani
,
T.
,
2020
, “
A Solar-Driven Lumped SOFC/SOEC System for Electricity and Hydrogen Production: 3E Analyses and a Comparison of Different Multi-Objective Optimization Algorithms
,”
J. Cleaner Prod.
,
271
, p.
122457
.
29.
Mohammadkhani
,
F.
,
Shokati
,
N.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2014
, “
Exergoeconomic Assessment and Parametric Study of a Gas Turbine-Modular Helium Reactor Combined With Two Organic Rankine Cycles
,”
Energy
,
65
, pp.
533
543
.
30.
European Commission, SOLGATE, Solar Hybrid Gas Turbine Electric Power System, 2005, https://op.europa.eu/en/publication-detail/-/publication/e4f88dd1-74ac-4416-aba0-3868cc8ea5ca, Accessed March 15, 2021.
31.
Hashemian
,
N.
, and
Noorpoor
,
A.
,
2019
, “
Assessment and Multi-Criteria Optimization of a Solar and Biomass-Based Multi-Generation System: Thermodynamic, Exergoeconomic and Exergoenvironmental Aspects
,”
Energy Convers. Manag.
,
195
, pp.
788
797
.
32.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
, “
Performance Assessment of a Novel Solar and Ocean Thermal Energy Conversion Based Multigeneration System for Coastal Areas
,”
ASME J. Sol. Energy
,
137
(
1
), p.
011013
.
33.
Jamil
,
M. A.
,
Shahzad
,
M. W.
, and
Zubair
,
S. M.
,
2020
, “
A Comprehensive Framework for Thermoeconomic Analysis of Desalination Systems
,”
Energy Convers. Manag.
,
222
, p.
113188
.
34.
Wang
,
Y.
,
Ye
,
Z.
,
Song
,
Y.
,
Yin
,
X.
, and
Cao
,
F.
,
2020
, “
Energy, Exergy, Economic and Environmental Analysis of Refrigerant Charge in Air Source Transcritical Carbon Dioxide Heat Pump Water Heater
,”
Energy Convers. Manag.
,
223
, p.
113209
.
35.
Rashidi
,
H.
, and
Khorshidi
,
J.
,
2018
, “
Exergoeconomic Analysis and Optimization of a Solar Based Multigeneration System Using Multiobjective Differential Evolution Algorithm
,”
J. Cleaner Prod.
,
170
, pp.
978
990
.
36.
Haghghi
,
M. A.
,
Shamsaiee
,
M.
,
Holagh
,
S. G.
,
Chitsaz
,
S. G.
, and
Rosen
,
M. A.
,
2019
, “
Thermodynamic, Exergoeconomic, and Environmental Evaluation of a New Multi-Generation System Driven by a Molten Carbonate Fuel Cell for Production of Cooling, Heating, Electricity, and Freshwater
,”
Energy Convers. Manag.
,
199
, p.
112040
.
37.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2014
, “Performance Evaluation of Integrated Energy Systems,”
Progress in Sustainable Energy Technologies: Generating Renewable Energy
,
I.
Dincer
,
A.
Midilli
, and
H.
Kucuk
, eds.,
Springer
,
Cham, Switzerland
, pp.
103
147
.
38.
International Energy Agency (IEA), 2016, Carbon Dioxide Emissions Coefficients,
https://www.eia.gov/environment/emissions/co2_vol_mass.php, Accessed March 15, 2021.
39.
Boyaghchi
,
F. A.
,
Chavoshi
,
M.
, and
Sabeti
,
V.
,
2018
, “
Multi-Generation System Incorporated With PEM Electrolyzer and Dual ORC Based on Biomass Gasification Waste Heat Recovery: Exergetic, Economic and Environmental Impact Optimizations
,”
Energy
,
145
, pp.
38
51
.
40.
Gomri
,
R.
,
2009
, “
Second Law Comparison of Single Effect and Double Effect Vapour Absorption Refrigeration Systems
,”
Energy Convers. Manag.
,
50
(
5
), pp.
1279
1287
.
41.
Safari
,
F.
, and
Dincer
,
I.
,
2019
, “
Development and Analysis of a Novel Biomass-Based Integrated System for Multigeneration With Hydrogen Production
,”
Int. J. Hydrogen Energy
,
44
(
7
), pp.
3511
3526
.
42.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
The Performance of the Kalina Cycle System 11 (KCS-11) With Low-Temperature Heat Sources
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
243
247
.
43.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.
You do not currently have access to this content.