Abstract

An investigation of the best ways to achieve optimal performance from a waste-heat-driven ammonia–water absorption heat pump over a wide range of operating conditions is presented. Waste heat from an 8-kWe diesel engine generator is recovered using an exhaust gas heat exchanger and delivered to the desorber by a heat transfer fluid loop. The absorber and condenser are hydronically coupled in parallel to an ambient heat exchanger for heat rejection. The evaporator provides chilled water for space-conditioning with a baseline cooling capacity of 2 kW. All heat and mass exchangers employ novel microscale geometries. A detailed thermodynamics model is developed to simulate performance and develop strategies to achieve the best performance in both cooling and heating modes over a range of operating conditions. These parametric studies show that improved coefficients of performance can be achieved by adjusting the coupling fluid temperatures in the evaporator and the condenser/absorber as the ambient temperature varies. With the varying return temperatures, the system is able to provide the 2-kW design cooling capacity for a wide range of ambient temperatures.

References

1.
Wu
,
S.
, and
Eames
,
I. W.
,
2000
, “
Innovations in Vapour-Absorption Cycles
,”
Appl. Energy
,
66
(
3
), pp.
251
266
.
2.
Garimella
,
S.
,
2003
, “
Innovations in Energy Efficient and Environmentally Friendly Space-Conditioning Systems
,”
Energy
,
28
(
15
), pp.
1593
1614
.
3.
Srikhirin
,
P.
,
Aphornratana
,
S.
, and
Chungpaibulpatana
,
S.
,
2001
, “
A Review of Absorption Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
343
372
.
4.
Cheung
,
K.
,
Hwang
,
Y.
,
Judge
,
J. F.
,
Kolos
,
K.
,
Singh
,
A.
, and
Radermacher
,
R.
,
1996
, “
Performance Assessment of Multistage Absorption Cycles
,”
Int. J. Refrig.
,
19
(
7
), pp.
473
481
.
5.
Engler
,
M.
,
Grossman
,
G.
, and
Hellmann
,
H. M.
,
1997
, “
Comparative Simulation and Investigation of Ammonia-Water: Absorption Cycles for Heat Pump Applications
,”
Int. J. Refrig.
,
20
(
7
), pp.
504
516
.
6.
Garimella
,
S.
,
Christensen
,
R. N.
, and
Lacy
,
D.
,
1996
, “
Performance Evaluation of a Generator-Absorber Heat-Exchange Heat Pump
,”
Appl. Therm. Eng.
,
16
(
7
), pp.
591
604
.
7.
DeVault
,
R. C.
, and
Marsala
,
J.
,
1990
, “
Ammonia-Water Triple-Effect Absorption Cycle
,”
ASHRAE Winter Meeting
,
Atalnta, GA
,
Feb. 11–14
, pp.
676
683
.
8.
Grossman
,
G.
,
Wilk
,
M.
, and
DeVault
,
R. C.
,
1994
, “
Simulation and Performance Analysis of Triple-Effect Absorption Cycles
,”
Proceedings of ASHRAE Transactions
,
New Orleans, LA
, pp.
452
462
.
9.
Garimella
,
S.
,
Lacy
,
D.
, and
Stout
,
R. E.
,
1997
, “
Space-Conditioning Using Triple-Effect Absorption Heat Pumps
,”
Appl. Therm. Eng.
,
17
(
12
), pp.
1183
1197
.
10.
Garimella
,
S.
,
2000
, “
Microchannel Components for Absorption Space-Conditioning Systems
,”
Proceedings of the ASHRAE Transactions
,
Dallas, TX
, pp.
453
453
.
11.
Garimella
,
S.
,
Determan
,
M. D.
,
Meacham
,
J. M.
,
Lee
,
S.
, and
Ernst
,
T. C.
,
2011
, “
Microchannel Component Technology for System-Wide Application in Ammonia/Water Absorption Heat Pumps
,”
Int. J. Refrig.
,
34
(
5
), pp.
1184
1196
.
12.
Nagavarapu
,
A. K.
, and
Garimella
,
S.
,
2011
, “
Design of Microscale Heat and Mass Exchangers for Absorption Space Conditioning Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021005
.
13.
Determan
,
M. D.
, and
Garimella
,
S.
,
2012
, “
Design, Fabrication, and Experimental Demonstration of a Microscale Monolithic Modular Absorption Heat Pump
,”
Appl. Therm. Eng.
,
47
, pp.
119
125
.
14.
Chandrasekaran
,
S.
,
Hughes
,
M.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
A Microchannel Shell-and-Tube Absorber for Ammonia-Water Absorption
,”
Appl. Therm. Eng.
,
185
, p.
116321
.
15.
Chakraborty
,
S.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
Novel Geometries for air-Cooled Condensation of Ammonia-Water Mixtures
,”
Int. J. Refrig.
,
121
, pp.
183
192
.
16.
Staedter
,
M. A.
, and
Garimella
,
S.
,
2018
, “
Design and Modeling of a Microscale Diabatic Distillation Column for Small Capacity Ammonia–Water Absorption Systems
,”
Int. J. Refrig.
,
94
, pp.
161
173
.
17.
Hoysall
,
D. C.
, and
Garimella
,
S.
,
2019
, “
Investigation of a Microchannel Heat and Mass Exchanger for Absorption Systems
,”
Appl. Therm. Eng.
,
148
, pp.
650
661
.
18.
Hu
,
J. S.
, and
Chao
,
C. Y. H.
,
2008
, “
Study of a Micro Absorption Heat Pump System
,”
Int. J. Refrig.
,
31
(
7
), pp.
1198
1206
.
19.
Pence
,
D.
,
2010
, “
The Simplicity of Fractal-Like Flow Networks for Effective Heat and Mass Transport
,”
Exp. Therm. Fluid. Sci.
,
34
(
4
), pp.
474
486
.
20.
Garimella
,
S.
,
Ponkala
,
M. J.
,
Goyal
,
A.
, and
Staedter
,
M. A.
,
2019
, “
Waste-Heat Driven Ammonia-Water Absorption Chiller for Severe Ambient Operation
,”
Appl. Therm. Eng.
,
154
, pp.
442
449
.
21.
Kini
,
G.
,
Chandrasekaran
,
S.
,
Tambasco
,
M.
, and
Garimella
,
S.
,
2020
, “
A Residential Absorption Chiller for High Ambient Temperatures
,”
Int. J. Refrig.
,
120
, pp.
31
38
.
22.
Klein
,
S. A.
,
2014
,
Engineering Equation Solver
,
F-Chart Software
,
Madison, WI
.
23.
Goyal
,
A.
,
Staedter
,
M. A.
,
Hoysall
,
D. C.
,
Ponkala
,
M. J.
, and
Garimella
,
S.
,
2017
, “
Experimental Evaluation of a Small-Capacity, Waste-Heat Driven Ammonia-Water Absorption Chiller
,”
Int. J. Refrig.
,
79
, pp.
89
100
.
24.
Keinath
,
C. M.
,
Garimella
,
S.
, and
Garrabrant
,
M. A.
,
2017
, “
Modeling of an Ammonia–Water Absorption Heat Pump Water Heater for Residential Applications
,”
Int. J. Refrig.
,
83
, pp.
39
50
.
25.
AHRI
,
2017
,
Standard for Performance Rating of Unitary Air-Conditioning & Air-Source Heat Pump Equipment
,
AHRI
,
Arlington, VA
.
You do not currently have access to this content.