Graphical Abstract Figure

Fuel economy and emissions performance of a 1.6L spark ignition engine fueled with gasoline-isobutanol blends under the Worldwide Harmonized Light Vehicle Test Procedure (WLTC)

Graphical Abstract Figure

Fuel economy and emissions performance of a 1.6L spark ignition engine fueled with gasoline-isobutanol blends under the Worldwide Harmonized Light Vehicle Test Procedure (WLTC)

Close modal

Abstract

This study experimentally investigates the performance and emissions of a typical vehicle in the Latin American automobile sector—specifically, a 1.6L spark ignition engine with port fuel injection (PFI) was used. The tests were performed using a Mustang MD150 chassis dynamometer under transient running conditions following the worldwide harmonized light test cycle (WLTC). Commercial gasoline (containing 10 vol% ethanol; E10) was blended with 10, 20, and 30 vol% of isobutanol. Results reveal that despite the reduction in the fuel lower heating value (LHV), adding the isobutanol B20 blend can improve the fuel economy by up to 6%. Similarly, when the alcohol content in the blend increased, the carbon monoxide (CO) and hydrocarbon (HC) emissions decreased by 10.5% and 10.2%, respectively. Furthermore, the B30 blend resulted in the lowest emissions but had the highest fuel consumption. Notably, these results were achieved without any adjustments to engine key components. Thus, the effects of isobutanol were consistent with the increase in octane and oxygenation of fuel blends.

References

1.
Shi
,
X.
,
Jiang
,
Y.
,
Wang
,
Q.
,
Qian
,
W.
,
Huang
,
R.
, and
Ni
,
J.
,
2022
, “
Three-Dimensional Simulation Analysis of the Effect of Hydrous Ethanol and Exhaust Gas Recirculation on Gasoline Direct Injection Engine Combustion and Emissions
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082304
.
2.
Sandu
,
C.
,
Pana
,
C.
,
Negurescu
,
N.
,
Cernat
,
A.
,
Fuiorescu
,
D.
,
Georgescu
,
R.
, and
Nuţu
,
C.
,
2022
, “
Theoretical and Experimental Research of an Automotive Gasoline Engine Fuelled With Butanol
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1235
(
1
), p.
012036
.
3.
Liu
,
H.
,
Wang
,
X.
,
Zhang
,
D.
,
Dong
,
F.
,
Liu
,
X.
,
Yang
,
Y.
,
Huang
,
H.
,
Wang
,
Y.
,
Wang
,
Q.
, and
Zheng
,
Z.
,
2019
, “
Investigation on Blending Effects of Gasoline Fuel With N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle
,”
Energies (Basel)
,
12
(
10
), p.
1845
.
4.
Ramachander
,
J.
, and
Gugulothu
,
S. K.
,
2022
, “
Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
5.
Efemwenkiekie
,
U. K.
,
Oyedepo
,
S. O.
,
Idiku
,
U. D.
,
Uguru-Okorie
,
D. C.
, and
Kuhe
,
A.
,
2019
, “
Comparative Analysis of a Four Stroke Spark Ignition Engine Performance Using Local Ethanol and Gasoline Blends
,”
Procedia Manuf.
,
35
, pp.
1079
1086
.
6.
Pal
,
P.
,
Kalvakala
,
K.
,
Wu
,
Y.
,
McNenly
,
M.
,
Lapointe
,
S.
,
Whitesides
,
R.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032305
.
7.
Fernández Naveira
,
Á.
,
Kennes
,
C.
, and
Del Carmén
,
M.
,
2018
, “
Biofuels Production (Ethanol, Butanol, Hexanol) From Renewable Sources
,”
Ph.D. thesis
,
Universidade da Coruna
,
A Coruña
, https://ruc.udc.es/dspace/handle/2183/21935. Accessed September 24, 2024.
8.
Wu
,
X.
,
Zhang
,
S.
,
Guo
,
X.
,
Yang
,
Z.
,
Liu
,
J.
,
He
,
L.
,
Zheng
,
X.
,
Han
,
L.
,
Liu
,
H.
, and
Wu
,
Y.
,
2019
, “
Assessment of Ethanol Blended Fuels for Gasoline Vehicles in China: Fuel Economy, Regulated Gaseous Pollutants and Particulate Matter
,”
Environ. Pollut.
,
253
, pp.
731
740
.
9.
Şahin
,
Z.
,
Nazım Aksu
,
O.
, and
Bayram
,
C.
,
2021
, “
The Effects of n-Butanol/Gasoline Blends and 2.5% n-Butanol/Gasoline Blend With 9% Water Injection Into the Intake Air on the SIE Engine Performance and Exhaust Emissions
,”
Fuel
,
303
, p.
121210
.
10.
Zhang
,
Z.
,
Wang
,
T.
,
Jia
,
M.
,
Wei
,
Q.
,
Meng
,
X.
, and
Shu
,
G.
,
2014
, “
Combustion and Particle Number Emissions of a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline and n-Butanol/Gasoline Blends With Exhaust Gas Recirculation
,”
Fuel
,
130
, pp.
177
188
.
11.
Kale
,
A. V.
, and
Krishnasamy
,
A.
,
2024
, “
Experimental Study on Combustion, Performance, and Emission Characteristics of a Homogeneous Charge Compression Ignition Engine Fuelled With Multiple Biofuel-Gasoline Blends
,”
Energy
,
288
, p.
129621
.
12.
Elfasakhany
,
A.
,
2016
, “
Engine Performance Evaluation and Pollutant Emissions Analysis Using Ternary Bio-ethanol–Iso-butanol–Gasoline Blends in Gasoline Engines
,”
J. Clean. Prod.
,
139
, pp.
1057
1067
.
13.
Elfasakhany
,
A.
,
2015
, “
Experimental Investigation on SI Engine Using Gasoline and a Hybrid Iso-butanol/Gasoline Fuel
,”
Energy Convers. Manage.
,
95
, pp.
398
405
.
14.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
15.
Lee
,
C. C.
,
Tran
,
M.-V.
,
Tan
,
B. T.
,
Scribano
,
G.
, and
Chong
,
C. T.
,
2021
, “
A Comprehensive Review on the Effects of Additives on Fundamental Combustion Characteristics and Pollutant Formation of Biodiesel and Ethanol
,”
Fuel
,
288
, p.
119749
.
16.
Zhao
,
L.
,
Su
,
X.
, and
Wang
,
X.
,
2020
, “
Comparative Study of Exhaust Gas Recirculation (EGR) and Hydrogen-Enriched EGR Employed in a SI Engine Fueled by Biobutanol-Gasoline
,”
Fuel
,
268
, p.
117194
.
17.
Dernotte
,
J.
,
Mounaim-Rousselle
,
C.
,
Halter
,
F.
, and
Seers
,
P.
,
2010
, “
Evaluation of Butanol–Gasoline Blends in a Port Fuel-Injection, Spark-Ignition Engine
,”
Oil Gas Sci. Technol.
,
65
(
2
), pp.
345
351
.
18.
Lin
,
M.
,
Zhang
,
X.
,
Wen
,
M.
,
Zhang
,
C.
,
Kong
,
X.
,
Jin
,
Z.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2022
, “
Effects of Unconventional Additives in Gasoline on the Performance of a Vehicle
,”
Energies (Basel)
,
15
(
5
), p.
1605
.
19.
Cooney
,
C.
,
Wallner
,
T.
,
McConnell
,
S.
,
Gillen
,
J. C.
,
Abell
,
C.
,
Miers
,
S. A.
, and
Naber
,
J. D.
,
2009
, “
Effects of Blending Gasoline With Ethanol and Butanol on Engine Efficiency and Emissions Using a Direct-Injection, Spark-Ignition Engine
,”
ASME 2009 Internal Combustion Engine Division Spring Technical Conference
,
Milwaukee, WI
,
May 3–6
,
ASMEDC
, pp.
157
165
.
20.
Bock
,
N. R.
, and
Northrop
,
W. F.
,
2021
, “
Influence of Fuel Properties on Gasoline Direct Injection Particulate Matter Emissions Over First 200 s of World-Harmonized Light-Duty Test Procedure Using an Engine Dynamometer and Novel ‘Virtual Drivetrain’ Software
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102307
.
21.
Tipanluisa
,
L.
,
Fonseca
,
N.
,
Casanova
,
J.
, and
López
,
J. M.
,
2021
, “
Effect of n-Butanol/Diesel Blends on Performance and Emissions of a Heavy-Duty Diesel Engine Tested Under the World Harmonised Steady-State Cycle
,”
Fuel
,
302
(
1
), p.
121204
.
22.
Hernández
,
J. J.
,
Lapuerta
,
M.
, and
Cova-Bonillo
,
A.
,
2019
, “
Autoignition Reactivity of Blends of Diesel and Biodiesel Fuels With Butanol Isomers
,”
J. Energy Inst.
,
92
(
4
), pp.
1223
1231
.
23.
Yüksel
,
F.
, and
Yüksel
,
B.
,
2004
, “
The Use of Ethanol–Gasoline Blend as a Fuel in an SI Engine
,”
Renew. Energy
,
29
(
7
), pp.
1181
1191
.
24.
Goldman
,
M. J.
,
Yee
,
N. W.
,
Kroll
,
J. H.
, and
Green
,
W. H.
,
2020
, “
Pressure-Dependent Kinetics of Peroxy Radicals Formed in Isobutanol Combustion
,”
Phys. Chem. Chem. Phys.
,
22
(
35
), pp.
19802
19815
.
25.
Olson
,
A. L.
,
Tunér
,
M.
, and
Verhelst
,
S.
,
2023
, “
A Review of Isobutanol as a Fuel for Internal Combustion Engines
,”
Energies (Basel)
,
16
(
22
), p.
7470
.
26.
Sarathy
,
S. M.
,
Thomson
,
M. J.
,
Togbé
,
C.
,
Dagaut
,
P.
,
Halter
,
F.
, and
Mounaim-Rousselle
,
C.
,
2009
, “
An Experimental and Kinetic Modeling Study of n-Butanol Combustion
,”
Combust. Flame
,
156
(
4
), pp.
852
864
.
27.
Tian
,
Z.
,
Zhen
,
X.
,
Wang
,
Y.
,
Liu
,
D.
, and
Li
,
X.
,
2020
, “
Comparative Study on Combustion and Emission Characteristics of Methanol, Ethanol and Butanol Fuel in TISI Engine
,”
Fuel
,
259
(
1
), p.
116199
.
28.
Zhang
,
S.
,
Suo
,
X.
,
Liu
,
L.
,
Wang
,
L.
,
Feng
,
H.
, and
Wang
,
C.
,
2024
, “
Study on Chemical Kinetic Mechanism and Autoignition Characteristics of Isopentanol/Gasoline Surrogate Fuel
,”
ASME J. Energy Resour. Technol.
,
146
(
12
), p.
122101
.
29.
Yusri
,
I. M.
,
Mamat
,
R.
,
Najafi
,
G.
,
Razman
,
A.
,
Awad
,
O. I.
,
Azmi
,
W. H.
,
Ishak
,
W. F. W.
, and
Shaiful
,
A. I. M.
,
2017
, “
Alcohol Based Automotive Fuels From First Four Alcohol Family in Compression and Spark Ignition Engine: A Review on Engine Performance and Exhaust Emissions
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
169
181
. .
30.
Rakopoulos
,
D. C.
,
2013
, “
Combustion and Emissions of Cottonseed Oil and Its Bio-diesel in Blends With Either n-Butanol or Diethyl Ether in HSDI Diesel Engine
,”
Fuel
,
105
(
1
), pp.
603
613
.
31.
Ge
,
J. C.
,
Wu
,
G.
, and
Choi
,
N. J.
,
2022
, “
Comparative Study of Pilot–Main Injection Timings and Diesel/Ethanol Binary Blends on Combustion, Emission and Microstructure of Particles Emitted From Diesel Engines
,”
Fuel
,
313
(
1
), p.
122658
.
32.
Naser
,
N.
,
Abdul Jameel
,
A. G.
,
Emwas
,
A. H.
,
Singh
,
E.
,
Chung
,
S. H.
, and
Sarathy
,
S. M.
,
2019
, “
The Influence of Chemical Composition on Ignition Delay Times of Gasoline Fractions
,”
Combust. Flame
,
209
(
1
), pp.
418
429
.
33.
Irimescu
,
A.
,
2011
, “
Fuel Conversion Efficiency of a Port Injection Engine Fueled With Gasoline–Isobutanol Blends
,”
Energy
,
36
(
5
), pp.
3030
3035
.
34.
Kale
,
A. V.
, and
Krishnasamy
,
A.
,
2022
, “
Effects of Variations in Fuel Properties on a Homogeneous Charge Compression Ignited Light-Duty Diesel Engine Operated With Gasoline-Isobutanol Blends
,”
Energy Convers. Manage.
,
258
, p.
115373
.
35.
Koupaie
,
M. M.
,
Cairns
,
A.
,
Vafamehr
,
H.
, and
Lanzanova
,
T. D. M.
,
2019
, “
A Study of Hydrous Ethanol Combustion in an Optical Central Direct Injection Spark Ignition Engine
,”
Appl. Energy
,
237
(
1
), pp.
258
269
.
36.
Yousif
,
I. E.
, and
Saleh
,
A. M.
,
2023
, “
Butanol-Gasoline Blends Impact on Performance and Exhaust Emissions of a Four Stroke Spark Ignition Engine
,”
Case Stud. Therm. Eng.
,
41
(
1
), p.
102612
.
37.
Sharudin
,
H.
,
Abdullah
,
N. R.
,
Najafi
,
G.
,
Mamat
,
R.
, and
Masjuki
,
H. H.
,
2017
, “
Investigation of the Effects of Iso-butanol Additives on Spark Ignition Engine Fuelled With Methanol-Gasoline Blends
,”
Appl. Therm. Eng.
,
114
(
1
), pp.
593
600
.
You do not currently have access to this content.