Graphical Abstract Figure

Schematic of experimental setup

Graphical Abstract Figure

Schematic of experimental setup

Close modal

Abstract

There is currently a gap in the available literature on retrofitting engines with less-advanced control systems to run on hydrogen-enriched natural gas. Potential advantages of hydrogen-enriched natural gas in these engines may not be realized without altering parameters such as spark-timing, exhaust gas recirculation, or the air/fuel ratio. However, in such engines, changes in spark-timing and exhaust gas recycle are often cost-prohibitive, leaving equivalence ratio adjustments as one of the few remaining viable operational strategies. In this study, a small-displacement (319 cc), naturally aspirated, single-cylinder gasoline engine without spark-timing control was converted to run on a 10 vol% blend of hydrogen-enriched natural gas. Stoichiometric operation improved thermal efficiency, fuel consumption, and total hydrocarbon emissions, but higher NOx emissions resulted. Despite no spark-timing control, lean-burn operation at an equivalence ratio of 0.7 was found to maintain performance improvements while also lowering emissions: fuel consumption was lowered versus the methane base case by 11%, and NOx and hydrocarbon emissions were both decreased by approximately 70% below the base case. This study concludes that in a scenario even without spark-timing control, the addition of 10 vol% hydrogen can improve power, emissions, and efficiency of a spark-ignited natural gas engine, which serves as a proof-of-concept that even fairly simple, small-displacement engines can benefit from switching from gasoline to hydrogen-enriched natural gas operation.

References

1.
WA Congress
,
2019
, “Clean Energy Transportation Act,” SB 5116, 66th Legislature.
2.
EPA
,
2023
, “Hydrogen in Combustion Turbine Electric Generating Units,” EPA-HQ-OAR-2022-0289, 5.
3.
Olaniyi
,
O.
,
Incer-Valverde
,
J.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2023
, “
Exergetic and Economic Evaluation of Natural Gas/Hydrogen Blends for Power Generation
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p. 062701.
4.
Galyas
,
A. B.
,
Kis
,
L.
,
Tihanyi
,
L.
,
Szunyog
,
I.
,
Vadaszi
,
M.
, and
Koncz
,
A.
,
2023
, “
Effect of Hydrogen Blending on the Energy Capacity of Natural Gas Transmission Networks
,”
Int. J. Hydrogen Energy
,
48
(
5
), pp.
14795
14807
.
5.
Tian
,
X.
, and
Pei
,
J.
,
2023
, “
Study Progress on the Pipeline Transportation Safety of Hydrogen-Blended Natural Gas
,”
Heliyon
,
9
(
11
), p.
e21454
. .
6.
Yan
,
F.
,
Xu
,
L.
, and
Wang
,
Y.
,
2018
, “
Application of Hydrogen Enriched Natural Gas in Spark Ignition IC Engines: From Fundamental Fuel Properties to Engine Performances and Emissions
,”
Renew. Sustain. Energy Rev.
,
82
(
2
), pp.
1457
1488
.
7.
Wang
,
L.
,
Hong
,
C.
,
Li
,
X.
,
Yang
,
Z.
,
Guo
,
S.
, and
Li
,
Q.
,
2022
, “
Review on Blended Hydrogen-Fuel Internal Combustion Engines: A Case Study for China
,”
Energy Rep.
,
8
(
11
), pp.
6480
6498
.
8.
Ingo
,
C.
,
Tuuf
,
J.
, and
Björklund-Sänkiaho
,
M.
,
2024
, “
Experimental Study of the Performance of a SI-Engine Fueled With Hydrogen-Natural Gas Mixtures
,”
Int. J. Hydrogen Energy
,
63
(
4
), pp.
1036
1043
.
9.
Zhang
,
W.
,
Wang
,
Y.
,
Long
,
W.
,
Tian
,
H.
, and
Dong
,
P.
,
2024
, “
Numerical Investigation on Knock Intensity, Combustion, and Emissions of a Heavy-Duty Natural Gas Engine With Different Hydrogen Mixing Strategies
,”
Int. J. Hydrogen Energy
,
62
(
4
), pp.
551
561
.
10.
Dhyani
,
V.
, and
Subramanian
,
K. A.
,
2018
, “
Experimental Investigation on Effects of Knocking on Backfire and Its Control in a Hydrogen Fueled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
43
(
4
), pp.
7169
7178
.
11.
Talibi
,
M.
,
Hellier
,
P.
,
Morgan
,
R.
,
Lenartowicz
,
C.
, and
Ladommatos
,
N.
,
2018
, “
Hydrogen-Diesel Fuel Co-combustion Strategies in Light Duty and Heavy Duty CI Engines
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
9046
9058
.
12.
Verma
,
S.
,
Kumar
,
K.
,
Das
,
L. M.
, and
Kaushik
,
S. C.
,
2021
, “
Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p. 092301.
13.
Sayyed
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2023
, “
Energy and Exergy Analyses of Multiple Biodiesel Blended Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p. 042301.
14.
Söhret
,
Y.
, and
Gürbüz
,
H.
,
2021
, “
A Comparison of Gasoline, Liquid Petroleum Gas, and Hydrogen Utilization in an Spark Ignition Engine in Terms of Environmental and Economic Indicators
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052301
.
15.
De Simio
,
L.
,
Iannaccone
,
S.
,
Guido
,
C.
,
Napolitano
,
P.
, and
Maiello
,
A.
,
2024
, “
Natural Gas/Hydrogen Blends for Heavy-Duty Spark Ignition Engines: Performance and Emissions Analysis
,”
Int. J. Hydrogen Energy
,
50
(
1
), pp.
743
757
.
16.
Xu
,
J.
,
Zhang
,
X.
,
Liu
,
J.
, and
Fan
,
L.
,
2010
, “
Experimental Study of a Single-Cylinder Engine Fueled With Natural Gas-Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
2909
2914
.
17.
Karagöz
,
Y.
,
Özgün
,
B.
, and
Köten
,
H.
,
2019
, “
Investigation of Hydrogen Usage on Combustion Characteristics and Emissions of a Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
14243
14256
.
18.
Molina
,
S.
,
Ruiz
,
S.
,
Gomez-Soriano
,
J.
, and
Olcina-Girona
,
M.
,
2023
, “
Impact of Hydrogen Substitution for Stable Lean Operation on Spark Ignition Engines Fueled by Compressed Natural Gas
,”
Res. Eng.
,
17
(
3
), p.
100799
.
19.
Molina
,
S.
,
Novella
,
R.
,
Gomez-Soriano
,
J.
, and
Olcina-Girona
,
M.
,
2023
, “
Study on Hydrogen Substitution in a Compressed Natural Gas Spark-Ignition Passenger Car Engine
,”
Energy Convers. Manage.
,
291
(
9
), p.
117259
.
20.
Lott
,
P.
, and
Deutschmann
,
O.
,
2021
, “
Lean-Burn Natural Gas Engines: Challenges and Concepts for Anefficient Exhaust Gas Aftertreatment System
,”
Emission Control Sci. Technol.
,
7
, pp.
1
6
.
21.
Huang
,
Z.
,
Wang
,
J.
,
Hu
,
E.
,
Tang
,
C.
, and
Zhang
,
Y.
,
2014
, “
Progress in Hydrogen Enriched Hydrocarbons Combustion and Engine Applications
,”
Front. Energy
,
8
(
3
), pp.
73
80
.
22.
Ma
,
F.
,
Wang
,
Y.
,
Liu
,
H.
,
Li
,
Y.
,
Wang
,
J.
, and
Zhao
,
S.
,
2007
, “
Experimental Study on Thermal Efficiency and Emission Characteristics of a Lean Burn Hydrogen Enriched Natural Gas Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
5067
5075
.
23.
Ma
,
F.
,
Ding
,
S.
,
Wang
,
Y.
,
Wang
,
M.
,
Jiang
,
L.
,
Naeve
,
N.
, and
Zhao
,
S.
,
2009
, “
Performance and Emission Characteristics of a Spark-Ignition (SI) Hydrogen-Enriched Compressed Natural Gas (HENG) Engine Under Various Operating Conditions Including Idle Conditions
,”
Energy Fuels
,
23
(
6
), pp.
3113
3118
.
24.
Singh
,
A.
,
Choudhary
,
A. K.
, and
Sinha
,
S.
,
2023
, “
An Investigation of Performance and Emissions of Diesel Engine Using Heterogeneous Catalyst Jatropha Biodiesel: A Sustainable Model Using Taguchi and Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022301
.
25.
Yan
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2023
, “
An Evaluation of the Conversion of Gasoline and Natural Gas Spark Ignition Engines to Ammonia/Hydrogen Operation From the Perspective of Laminar Flame Speed
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012302
.
26.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, et al.,
1999
, “Gri mech 3.0.”
27.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes,” Version 3.0.0, https://www.cantera.org
28.
Shrestha
,
S. B.
, and
Karim
,
G.
,
2006
, “
The Operational Mixture Limits in Engines Fueled With Alternative Gaseous Fuels
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
223
228
.
29.
Keshavarzzadeh
,
M.
,
Zahedi
,
R.
,
Eskandarpanah
,
R.
,
Qezelbigloo
,
S.
,
Gitifar
,
S.
,
Farahani
,
O. N.
, and
Mirzaei
,
A. M.
,
2023
, “
Estimation of NOx Pollutants in a Spark Engine Fueled by Mixed Methane and Hydrogen Using Neural Networks and Genetic Algorithm
,”
Heliyon
,
9
(
4
), pp.
1
10
.
You do not currently have access to this content.