Abstract

More than 2 billion people globally depend on biomass for cooking, predominantly using conventional cookstoves. This leads to approximately 4 million annual deaths due to indoor air pollution. Currently, air pollution stands as the biggest environmental health challenge worldwide, having harmful effects on human health, climate, and ecosystems. These health risks can be reduced by improving stove design and combustion characteristics. This article focuses on the design and development of a low-cost IoT-based real-time emission monitoring system (LIEMS) integrated with a thermoelectric generator-integrated biomass cookstove (TIBC). The TIBC is designed to support multi-fuel use, improve user-friendliness, reduce emissions, and enhance overall efficiency. Here, the emission performance evaluation is facilitated by the LIEMS, which monitors pollutants such as particulate matter PM2.5, PM1.0, PM10, carbon monoxide (CO), carbon dioxide (CO2), and volatile organic compounds (VOCs) while also capturing temperature profiles of the cookstove. The LIEMS system is powered entirely by the thermoelectric generator, eliminating the need for an external power source. Built on the ESP-WROOM-32 development board and integrated with the ThingSpeak IoT platform, the system enables real-time data visualization, email alerts for unsafe pollutant levels, and air quality management strategies. Validation results showed measurement discrepancies of ±5.42% for PM2.5, ±5.46% for PM1.0, ±5.49% for PM10, ±23.68% for CO, ±2.38% for CO2, and ±2.17%, ±8.57%, and ±2.17% for the cookstove's hot-side temperature (Thot) and ±8.57% for its cold-side temperature (Tcold). This new integration of IoT technology with TIBC offers a reliable and user-friendly solution for real-time indoor air quality monitoring, advancing household air quality management and sustainability.

References

1.
Pandit
,
S.
,
Mal
,
R.
,
Purwar
,
A.
, and
Kumari
,
K.
,
2024
, “
Waste Heat Regeneration From Thermoelectric Generator-Based Improved Biomass Cookstove (TIBC): Modelling of TEG System Utilizing DC–DC Converter With Fuzzy Logic MPPT
,”
Energy Convers. Manage.
,
300
, p.
117977
.
2.
IEA
,
2020
, “World Energy Outlook 2020,” https://www.iea.org/reports/world-energy-outlook-2020, Accessed June 7, 2024.
3.
IEA
,
2021
, “India Energy Outlook 2021,” https://www.iea.org/reports/india-energy-outlook-2021, Accessed June 8, 2024.
4.
Pratiti
,
R.
,
Vadala
,
D.
,
Kalynych
,
Z.
, and
Sud
,
P.
,
2020
, “
Health Effects of Household Air Pollution Related to Biomass Cook Stoves in Resource-Limited Countries and Its Mitigation by Improved Cookstoves
,”
Environ. Res.
,
186
, p.
109574
.
5.
Balidemaj
,
F.
,
Isaxon
,
C.
,
Abera
,
A.
, and
Malmqvist
,
E.
,
2021
, “
Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor
,”
Int. J. Environ. Res. Public Health
,
18
(
18
), p.
9859
.
6.
Gupta
,
A.
,
Mulukutla
,
A. N. V.
,
Gautam
,
S.
,
TaneKhan
,
W.
,
Waghmare
,
S. S.
, and
Labhasetwar
,
N. K.
,
2020
, “
Development of a Practical Evaluation Approach of a Typical Biomass Cookstove
,”
Environ. Technol. Innov.
,
17
, p.
100613
.
7.
Zhang
,
H.
, and
Srinivasan
,
R.
,
2020
, “
A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management
,”
Sustainability
,
12
(
21
), p.
9045
.
8.
WHO (World Health Organization)
,
2018
, “Household Air Pollution,” https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/household-air-pollution, Accessed June 23, 2024.
9.
Tryner
,
J.
,
Phillips
,
M.
,
Quinn
,
C.
,
Neymark
,
G.
,
Wilson
,
A.
,
Jathar
,
S. H.
,
Carter
,
E.
, and
Volckens
,
J.
,
2021
, “
Design and Testing of a Low-Cost Sensor and Sampling Platform for Indoor Air Quality
,”
Build. Environ.
,
206
, p.
108398
.
10.
Hu
,
K.
,
Sivaraman
,
V.
,
Luxan
,
B. G.
, and
Rahman
,
A.
,
2016
, “
Design and Evaluation of a Metropolitan Air Pollution Sensing System
,”
IEEE Sens. J.
,
16
(
5
), pp.
1448
1459
.
11.
Mona
,
Y.
,
Do
,
T. A.
,
Sekine
,
C.
,
Suttakul
,
P.
, and
Chaichana
,
C.
,
2022
, “
Geothermal Electricity Generator Using Thermoelectric Module for IoT Monitoring
,”
Energy Rep.
,
8
, pp.
347
352
.
12.
Ishaq
,
H.
,
Islam
,
S.
,
Dincer
,
I.
, and
Yilbas
,
B. S.
,
2020
, “
Development and Performance Investigation of a Biomass Gasification-Based Integrated System With Thermoelectric Generators
,”
J. Cleaner Prod.
,
256
, p.
120625
.
13.
Manivannan
,
S. P.
,
Gunasekaran
,
D. L.
,
Jaganathan
,
G.
,
Natesan
,
S.
,
Muthusamy
,
S. M.
,
Kim
,
S. C.
,
Kumar
,
B.
,
Poongavanam
,
G. K.
, and
Duraisamy
,
S.
,
2022
, “
Energy and Environmental Analysis of a Solar Evacuated Tube Heat Pipe Integrated Thermoelectric Generator Using IoT
,”
Environ. Sci. Pollut. Res.
,
29
(
38
), pp.
57835
57850
.
14.
Sok
,
R.
,
Kusaka
,
J.
,
Nakashima
,
H.
,
Minagata
,
H.
,
Dimitriou
,
P.
, and
Liu
,
J.
,
2023
, “
Thermoelectric Generation From Exhaust Heat in Electrified Natural Gas Trucks: Modeling and Analysis of an Integrated Engine System Performance Improvement
,”
ASME J. Energy Resour. Technol.
,
145
(
7
), p.
071702
.
15.
Pantelic
,
J.
,
Son
,
Y. J.
,
Staven
,
B.
, and
Liu
,
Q.
,
2023
, “
Cooking Emission Control With IoT Sensors and Connected Air Quality Interventions for Smart and Healthy Homes: Evaluation of Effectiveness and Energy Consumption
,”
Energy Build.
,
286
, p.
112932
.
16.
Chawla
,
R.
,
Singhal
,
P.
, and
Garg
,
A. K.
,
2020
, “
Internet of Things Driven Framework for Smart Solar Energy System
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011201
.
17.
Pandit
,
S.
,
Chandra Das
,
D.
,
Das
,
B.
, and
Newar
,
P. P.
,
2025
, “
The Performance Assessment of TIBC Cookstove With Multi-solid Fuels for Small-Scale Electricity Generation in Remote Areas
,”
Renew. Energy
,
192
, p.
122409
.
18.
Kshirsagar
,
M. P.
, and
Kalamkar
,
V. R.
,
2022
, “
Hybrid Draft Direct-Combustion With Secondary Air Jets in Cross-Flow for Reducing CO and PM2.5 Emissions in Biomass Cookstoves
,”
Sustain. Energy Technol. Assess.
,
51
, p.
101913
.
19.
Mal
,
R.
,
Prasad
,
R.
, and
Vijay
,
V. K.
,
2016
, “
Multi-functionality Clean Biomass Cookstove for Off-Grid Areas
,”
Process Saf. Environ. Prot.
,
104
, pp.
85
94
.
20.
Alsamrai
,
O.
,
Redel-Macias
,
M. D.
,
Pinzi
,
S.
, and
Dorado
,
M. P.
,
2024
, “
A Systematic Review for Indoor and Outdoor Air Pollution Monitoring Systems Based on Internet of Things
,”
Sustainability
,
16
(
11
), p.
4353
.
21.
Liu
,
Z.
,
Wang
,
G.
,
Zhao
,
L.
, and
Yang
,
G.
,
2021
, “
Multi-points Indoor Air Quality Monitoring Based on Internet of Things
,”
IEEE Access
,
9
, pp.
70479
70492
.
22.
Saini
,
J.
,
Dutta
,
M.
, and
Marques
,
G.
,
2020
, “
Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review
,”
Int. J. Environ. Res. Public Health
,
17
(
14
), p.
4942
.
23.
Duangsuwan
,
S.
,
Takarn
,
A.
, and
Jamjareegulgarn
,
P.
,
2018
, “
A Development on Air Pollution Detection Sensors Based on NB-IoT Network for Smart Cities
,”
Proceedings of the 2018 18th International Symposium on Communications and Information Technologies (ISCIT)
,
Bangkok, Thailand
,
Sept. 26–29
,
IEEE
, pp.
313
317
.
24.
Tzortzakis
,
K.
,
Papafotis
,
K.
, and
Sotiriadis
,
P. P.
,
2017
, “
Wireless Self-powered Environmental Monitoring System for Smart Cities Based on LoRa
,”
Proceedings of the 2017 Panhellenic Conference on Electronics and Telecommunications (PACET)
,
Xanthi
,
Nov. 17–18
,
IEEE
, pp.
1
4
.
25.
Liu
,
S.
,
Xia
,
C.
, and
Zhao
,
Z.
,
2016
, “
A Low-Power Real-Time Air Quality Monitoring System Using LPWAN Based on LoRa
,”
2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
,
Hangzhou, China
,
Oct. 25–28
,
IEEE
, pp.
379
381
.
26.
Hassan
,
C. A. U.
,
Iqbal
,
J.
,
Khan
,
M. S.
,
Hussain
,
S.
,
Akhunzada
,
A.
,
Ali
,
M.
,
Gani
,
A.
,
Uddin
,
M.
, and
Ullah
,
S. S.
,
2022
, “
Design and Implementation of Real-Time Kitchen Monitoring and Automation System Based on Internet of Things
,”
Energies
,
15
(
18
), p.
6778
.
27.
Sullivan
,
B.
,
Allawatt
,
G.
,
Emery
,
A.
,
Means
,
P.
,
Kramlich
,
J.
, and
Posner
,
J.
,
2017
, “
Time-Resolved Particulate Emissions Monitoring of Cookstove Biomass Combustion Using a Tapered Element Oscillating Microbalance
,”
Combust. Sci. Technol.
,
189
(
6
), pp.
923
936
.
28.
Tan
,
Q.
,
Han
,
X.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2022
, “
Neural Network Soft Sensors for Gasoline Engine Exhaust Emission Estimation
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082103
.
29.
Rowe
,
D. M.
,
1978
, “
Thermoelectric Power Generation
,”
Proc. Inst. Electr. Eng.
,
125
(
11R
), pp.
1113
1136
.
30.
Byon
,
Y. S.
, and
Jeong
,
J. W.
,
2020
, “
Annual Energy Harvesting Performance of a Phase Change Material-Integrated Thermoelectric Power Generation Block in Building Walls
,”
Energy Build.
,
228
, pp.
110470
.
31.
Zhu
,
Y.
,
Li
,
K.
,
Linghu
,
J.
,
Yuan
,
P.
,
Zuo
,
S.
, and
Weng
,
Z.
,
2024
, “
Modeling Study on the Geometric Optimization of Thermoelectric Modules
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
011702
.
32.
Fernández-Yáñez
,
P.
,
Romero
,
V.
,
Armas
,
O.
, and
Cerretti
,
G.
,
2021
, “
Thermal Management of Thermoelectric Generators for Waste Energy Recovery
,”
Appl. Therm. Eng.
,
196
, p.
117291
.
33.
Jouhara
,
H.
,
Żabnieńska-Góra
,
A.
,
Khordehgah
,
N.
,
Doraghi
,
Q.
,
Ahmad
,
L.
,
Norman
,
L.
,
Axcell
,
B.
,
Wrobel
,
L.
, and
Dai
,
S.
,
2021
, “
Thermoelectric Generator (TEG) Technologies and Applications
,”
Int. J. Thermofluids
,
9
, p.
100063
.
34.
Elzalik
,
M.
,
Rezk
,
H.
,
Mostafa
,
R.
,
Thomas
,
J.
, and
Shehata
,
E. G.
,
2020
, “
An Experimental Investigation on Electrical Performance and Characterization of Thermoelectric Generator
,”
Int. J. Energy Res.
,
44
(
1
), pp.
128
143
.
36.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Experimental Analysis of a Novel Solar Pond Driven Thermoelectric Energy System
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121302
.
37.
Zhang
,
H.
,
Srinivasan
,
R.
, and
Ganesan
,
V.
,
2021
, “
Low Cost, Multi-pollutant Sensing System Using Raspberry Pi for Indoor Air Quality Monitoring
,”
Sustainability
,
13
(
1
), p.
370
.
38.
EPA
,
2024
, “
What Are Particulate Matter (PM) Air Quality Standards
,” https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm, Accessed June 6, 2024.
39.
European Commission
,
2024
, “Air Quality Standards,” https://environment.ec.europa.eu/topics/air_en, Accessed May 6, 2024.
40.
Health and Safety Executive
,
2024
, “
General Hazards of Carbon Dioxide
,” https://www.hse.gov.uk/contact/index.htm, Accessed December 5, 2024.
41.
EPA
,
2024
, “
Carbon Monoxide's Impact on Indoor Air Quality
,” https://www.epa.gov/indoor-air-quality-iaq/carbon-monoxides-impact-indoor-air-quality, Accessed February 5, 2024.
42.
Zimmerman
,
N.
,
2022
, “
Tutorial: Guidelines for Implementing Low-Cost Sensor Networks for Aerosol Monitoring
,”
J. Aerosol Sci.
,
159
, p.
105872
.
43.
Gäbel
,
P.
,
Koller
,
C.
, and
Hertig
,
E.
,
2022
, “
Development of Air Quality Boxes Based on Low-Cost Sensor Technology for Ambient Air Quality Monitoring
,”
Sensors
,
22
(
10
), p.
3830
.
44.
He
,
J.
,
Xu
,
L.
,
Wang
,
P.
, and
Wang
,
Q.
,
2017
, “
A High Precise E-Nose for Daily Indoor Air Quality Monitoring in Living Environment
,”
Proceedings of the 2017 International Conference on Integration
,
IEEE
, pp.
286
294
.
45.
Peng
,
L.
,
Danni
,
F.
,
Shengqian
,
J.
, and
Mingjie
,
W.
,
2017
, “
A Movable Indoor Air Quality Monitoring System
,”
Proceedings of the 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC)
,
Chengdu, China
,
July 21–23
,
IEEE
, pp.
126
129
.
46.
Kumar
,
A.
,
Kumar
,
A.
, and
Singh
,
A.
,
2017
, “
Energy Efficient and Low-Cost Air Quality Sensor for Smart Buildings
,”
Proceedings of the 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)
,
Ghaziabad, India
,
Feb. 9–10
,
IEEE
, pp.
1
4
.
47.
Wang
,
Y.
,
Jang-Jaccard
,
J.
,
Boulic
,
M.
,
Phipps
,
R.
,
Chitty
,
C.
,
Weyers
,
R.
,
Moses
,
A.
,
Olivares
,
G.
,
Ponder-Sutton
,
A.
, and
Cunningham
,
C.
,
2018
, “
Deployment Issues for Integrated Open-Source—Based Indoor Air Quality School Monitoring Box (SKOMOBO)
,”
2018 IEEE Sensors Applications Symposium (SAS)
,
Seoul, South Korea
,
Mar. 12–14
,
IEEE
, pp.
1
4
.
48.
Gillooly
,
S. E.
,
Zhou
,
Y.
,
Vallarino
,
J.
,
Chu
,
M. T.
,
Michanowicz
,
D. R.
,
Levy
,
J. I.
, and
Adamkiewicz
,
G.
,
2019
, “
Development of an In-Home, Real-Time Air Pollutant Sensor Platform and Implications for Community Use
,”
Environ. Pollut.
,
244
, pp.
440
450
.
49.
Wall
,
D.
,
McCullagh
,
P.
,
Cleland
,
I.
, and
Bond
,
R.
,
2021
, “
Development of an Internet of Things Solution to Monitor and Analyse Indoor Air Quality
,”
Internet of Things
,
14
, p.
100392
.
50.
Alvear-Puertas
,
V. E.
,
Burbano-Prado
,
Y. A.
,
Rosero-Montalvo
,
P. D.
,
Tözün
,
P.
,
Marcillo
,
F.
, and
Hernandez
,
W.
,
2022
, “
Smart and Portable Air-Quality Monitoring IoT Low-Cost Devices in Ibarra City, Ecuador
,”
Sensors
,
22
(
18
), p.
7015
.
You do not currently have access to this content.