Abstract

The safety risks associated with hydrogen production plants are significant and warrant close attention. Investigating the effects of vault structures on the dispersion and risks of leaked hydrogen can inform assessments of how facility structures influence hydrogen behavior, providing a theoretical framework for the secure layout of hydrogen production plants. Computational fluid dynamics (CFD) software ansys fluent was employed in this research to establish a model of a hydrogen production plant. Simulations were conducted to assess hydrogen dispersion and the distribution of flammable clouds under various vault heights. Results indicate that, upon reaching the vault, hydrogen forms a high-concentration accumulation layer along the ceiling wall, subsequently diffusing downward before ultimately rising and diluting. An increase in the vault height was shown to alter the hydrogen dispersion path, enhance atmospheric dilution, and effectively suppress the development of flammable clouds, thereby reducing the likelihood of an explosion. However, the optimal vault height should be selected based on a comprehensive consideration of the plant's specific operational requirements.

References

1.
Dash
,
S.
,
Arjun Singh
,
K.
,
Jose
,
S.
,
Vincent Herald Wilson
,
D.
,
Elangovan
,
D.
,
Surapraraju
,
S. K.
, and
Natarajan
,
S. K.
,
2024
, “
Advances in Green Hydrogen Production Through Alkaline Water Electrolysis: A Comprehensive Review
,”
Int. J. Hydrogen Energy
,
83
, pp.
614
629
.
2.
Ge
,
L.
,
Zhang
,
B.
,
Huang
,
W.
,
Li
,
Y.
,
Hou
,
L.
,
Xiao
,
J.
,
Mao
,
Z.
, and
Li
,
X.
,
2024
, “
A Review of Hydrogen Generation, Storage, and Applications in Power System
,”
J. Energy Storage
,
75
, pp.
109307
109307
.
3.
Hassan
,
Q.
,
Abdulateef
,
A. M.
,
Hafedh
,
S. A.
,
Al-samari
,
A.
,
Abdulateef
,
J.
,
Sameen
,
A. Z.
,
Salman
,
H. M.
,
Al-Jiboory
,
A. K.
,
Wieteska
,
S.
, and
Jaszczur
,
M.
,
2023
, “
Renewable Energy-to-Green Hydrogen: A Review of Main Resources Routes, Processes and Evaluation
,”
Int. J. Hydrogen Energy
,
48
(
46
), pp.
17383
17408
.
4.
Yang
,
N.
,
Deng
,
J.
,
Wang
,
C.
,
Bai
,
Z.
, and
Qu
,
J.
,
2024
, “
High Pressure Hydrogen Leakage Diffusion: Research Progress
,”
Int. J. Hydrogen Energy
,
50
, pp.
1029
1046
.
5.
Guo
,
L.
,
Su
,
J.
,
Wang
,
Z.
,
Shi
,
J.
,
Guan
,
X.
,
Cao
,
W.
, and
Ou
,
Z.
,
2023
, “
Hydrogen Safety: An Obstacle That Must Be Overcome on the Road Towards Future Hydrogen Economy
,”
Int. J. Hydrogen Energy
,
51
, pp.
1055
1078
.
6.
Abohamzeh
,
E.
,
Salehi
,
F.
,
Sheikholeslami
,
M.
,
Abbassi
,
R.
, and
Khan
,
F.
,
2021
, “
Review of Hydrogen Safety During Storage, Transmission, and Applications Processes
,”
J. Loss Prevent. Process Ind.
,
72
, p.
104569
.
7.
Li
,
Y.
,
Wang
,
Z.
,
Shi
,
X.
, and
Fan
,
R.
,
2023
, “
Safety Analysis of Hydrogen Leakage Accident With a Mobile Hydrogen Refueling Station
,”
Process Saf. Environ. Prot.
,
171
, pp.
619
629
.
8.
Wang
,
L.
,
Lyu
,
X.
,
Zhang
,
S.
,
Zhang
,
J.
,
Li
,
X.
,
Chen
,
J.
,
Song
,
Q.
,
Lin
,
J.
, and
Ma
,
T.
,
2024
, “
The Simulation and Analysis of Leakage, Diffusion Behavior, and Risk Mitigation Measures in a Hydrogen-Refueling Station
,”
Energy Technol.
,
12
(
8
), p. 2400620.
9.
Wang
,
L.
,
Lyu
,
X.
,
Zhang
,
J.
,
Liu
,
F.
,
Li
,
X.
,
Qiu
,
X.
,
Song
,
Q.
,
Lin
,
J.
, and
Ma
,
T.
,
2024
, “
Analysis of Hydrogen Leakage Behavior and Risk Mitigation Measures in a Hydrogen Refueling Station
,”
Int. J. Hydrogen Energy
,
83
, pp.
545
552
.
10.
Lu
,
C.
,
Hu
,
J.
,
Ye
,
S.
,
Gu
,
C.
, and
Hua
,
Z.
,
2022
, “
Numerical Study of Hydrogen Leakage and Explosion in Hydrogen Refueling Station With Large Volume Hydrogen Storage Vessels
,”
Volume 2: Computer Technology and Bolted Joints; Design and Analysis
,
Las Vegas, NV
,
July 17–22
, p. V002T02A029.
11.
Cui
,
W.
,
Yuan
,
Y.
,
Tong
,
L.
, and
Shen
,
B.
,
2023
, “
Numerical Simulation of Hydrogen Leakage Diffusion in Seaport Hydrogen Refueling Station
,”
Int. J. Hydrogen Energy
,
48
(
63
), pp.
24521
24535
.
12.
Zhang
,
J.
,
Lyu
,
X.
,
Wang
,
L.
,
Zhang
,
S.
, and
Li
,
X.
,
2024
, “
Hydrogen Leakage Risks and Mitigation Measures in Large Underground Garages
,”
J. Energy Resour. Technol.
,
1
(
3
), p.
032101
.
13.
Song
,
B.
,
Wang
,
X.
,
Kang
,
Y.
, and
Li
,
H.
,
2024
, “
Research on Hydrogen Leakage Diffusion and Safety Analysis in Hydrogen Fuel Cell Vehicles With Regard to Leakage Location and Ventilation Ports
,”
Int. J. Hydrogen Energy
,
83
, pp.
173
187
.
14.
Hajji
,
Y.
,
Bouteraa
,
M.
,
Cafsi
,
A. E. L.
,
Belghith
,
A.
,
Bournot
,
P.
, and
Kallel
,
F.
,
2014
, “
Dispersion and Behavior of Hydrogen During a Leak in a Prismatic Cavity
,”
Int. J. Hydrogen Energy
,
39
(
11
), pp.
6111
6119
.
15.
Hajji
,
Y.
,
Bouteraa
,
M.
,
Cafsi
,
A. E.
,
Belghith
,
A.
,
Bournot
,
P.
, and
Kallel
,
F.
,
2015
, “
Natural Ventilation of Hydrogen During a Leak in a Residential Garage
,”
Renew. Sustain. Energy Rev.
,
50
, pp.
810
818
.
16.
Wang
,
Q.
,
Zhai
,
C.
,
Gong
,
J.
,
Wang
,
Z.
,
Jiang
,
J.
, and
Zhou
,
Y.
,
2020
, “
Analytical and Numerical Predictions of Hydrogen Gas Flow Induced by Wall and Corner Leakages in Confined Space
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
6848
6862
.
17.
Malakhov
,
A. A.
,
Avdeenkov
,
A. V.
,
du Toit
,
M. H.
, and
Bessarabov
,
D. G.
,
2020
, “
CFD Simulation and Experimental Study of a Hydrogen Leak in a Semi-Closed Space With the Purpose of Risk Mitigation
,”
Int. J. Hydrogen Energy
,
45
(
15
), pp.
9231
9240
.
18.
Patel
,
P.
,
Baalisampang
,
T.
,
Arzaghi
,
E.
,
Garaniya
,
V.
,
Abbassi
,
R.
, and
Salehi
,
F.
,
2023
, “
Computational Analysis of the Hydrogen Dispersion in Semi-Confined Spaces
,”
Chem. Eng. Res. Des.
,
176
, pp.
475
488
.
19.
Kim
,
J.
,
Kim
,
Y.
,
Park
,
B.
,
Yoon
,
U.
, and
Kang
,
C.
,
2023
, “
The Effect of Natural Ventilation Through Roof Vents Following Hydrogen Leaks in Confined Spaces
,”
Int. J. Hydrogen Energy
,
50
, pp.
1395
1405
.
20.
Huang
,
T.
,
Zhao
,
M.
,
Ba
,
Q.
,
Christopher
,
D. M.
, and
Li
,
X.
,
2022
, “
Modeling of Hydrogen Dispersion From Hydrogen Fuel Cell Vehicles in an Underground Parking Garage
,”
Int. J. Hydrogen Energy
,
47
(
1
), pp.
686
696
.
21.
Zhang
,
X.
,
Wang
,
Q.
,
Hou
,
X.
,
Li
,
Y.
,
Miao
,
Y.
,
Li
,
K.
, and
Zhang
,
L.
,
2021
, “
Numerical Analysis of the Hydrogen Dispersion Behavior in Different Directions in a Naturally Ventilated Space
,”
Appl. Sci.
,
11
(
2
), p.
615
.
22.
Hajji
,
Y.
,
Bouteraa
,
M.
,
Bournot
,
P.
, and
Bououdina
,
M.
,
2022
, “
Assessment of an Accidental Hydrogen Leak From a Vehicle Tank in a Confined Space
,”
Int. J. Hydrogen Energy
,
47
(
66
), pp.
28710
28720
.
23.
Pokorska-Silva
,
I.
,
Kadela
,
M.
, and
Fedorowicz
,
L.
,
2020
, “
A Reliable Numerical Model for Assessing the Thermal Behavior of a Dome Building
,”
J. Build. Eng.
,
32
, p.
101706
.
24.
Tlili
,
O.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2015
, “
Airflow Induced by a Room Fire: Effect of Roof Shape and Source Location
,”
Int. J. Therm. Sci.
,
90
, pp.
135
149
.
25.
Asfour
,
O. S.
, and
Gadi
,
M. B.
,
2008
, “
Using CFD to Investigate Ventilation Characteristics of Vaults as Wind-Inducing Devices in Buildings
,”
Appl. Energy
,
85
(
12
), pp.
1126
1140
.
26.
Hadavand
,
M.
,
Yaghoubi
,
M.
, and
Emdad
,
H.
,
2008
, “
Thermal Analysis of Vaulted Roofs
,”
Energy Build.
,
40
(
3
), pp.
265
275
.
27.
Shucheng
,
Z.
,
Lyu
,
X.
,
Wang
,
L.
,
Li
,
X.
,
Yu
,
Y.
,
Zhao
,
H.
,
Wang
,
S.
, and
Guo
,
Z.
,
2024
, “
Effect of Hydrogen Plant Structure on Hydrogen Diffusion
,”
31st International Conference on Nuclear Engineering
,
Prague, Czech Republic
, Aug. 4–8, p.
V010T12A010
.
28.
Tian
,
Y.
,
Qin
,
C.
,
Yang
,
Z.
, and
Hao
,
D.
,
2023
, “
Numerical Simulation Study on the Leakage and Diffusion Characteristics of High-Pressure Hydrogen Gas in Different Spatial Scenes
,”
Int. J. Hydrogen Energy
,
50
(
Nov.
), pp.
1335
1349
.
29.
Su
,
Y.
,
Li
,
J.
,
Yu
,
B.
, and
Zhao
,
Y.
,
2022
, “
Numerical Investigation on the Leakage and Diffusion Characteristics of Hydrogen-Blended Natural Gas in a Domestic Kitchen
,”
Renew. Energy
,
189
, pp.
899
916
.
30.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
You do not currently have access to this content.