Graphical Abstract Figure

The underground garage model

Graphical Abstract Figure

The underground garage model

Close modal

Abstract

Hydrogen fuel cell vehicles, characterized by zero emissions, pollution-free operation, and high efficiency, have emerged as a key focus in the development of the global automotive industry. The operating pressure for onboard hydrogen storage tanks commonly ranges from 30 to 70 MPa. Due to hydrogen's wide combustion and explosion concentration range and its exceptionally rapid combustion rate, there is a high risk of explosions and other accidents once equipment failure happens during storage and transportation. The research presented in this paper focuses on the analysis of hydrogen leakage from storage tanks in an underground garage using fluent simulations. The findings reveal that released hydrogen forms a jet from the storage tank under high pressure, dispersing along the ceiling upon reaching it and accumulating at the edges and corners. Moreover, larger leakage ports on the storage tank result in a greater mass flow of hydrogen, leading to an expanded diffusion range of the hydrogen cloud and decreased local concentration. To mitigate the risk of hydrogen combustion and explosion within the garage, this study introduces 16 extraction vents on the garage ceiling and six natural vents on its sides. The validation of the proposed hydrogen risk mitigation measures demonstrates their effectiveness in reducing the concentration and range of flammable clouds within the garage, especially when dealing with larger leakage ports.

References

1.
Abbasian
,
H. E.
,
Seyed
,
A. A.
, and
Talebi
,
S.
,
2024
, “
Hydrogen as an Energy Source: A Review of Production Technologies and Challenges of Fuel Cell Vehicles
,”
Energy Rep.
,
12
, pp.
3778
3794
.
2.
Astbury
,
G. R.
, and
Hawksworth
,
S. J.
,
2007
, “
Spontaneous Ignition of Hydrogen Leaks: A Review of Postulated Mechanisms
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2178
2185
.
3.
Yang
,
F. Y.
,
Wang
,
T. Z.
,
Den
,
X. T.
,
Dang
,
X. T.
,
Huang
,
Z. Y.
,
Song
,
H.
,
Li
,
Y. Y.
, and
Ouyang
,
M. G.
,
2021
, “
Review on Hydrogen Safety Issues: Incident Statistics, Hydrogen Diffusion, and Detonation Process
,”
Int. J. Hydrogen Energy
,
46
(
61
), pp.
31467
31488
.
4.
Kytömaa
,
H.
,
Wechsung
,
A.
,
Dimitrakopoulos
,
G.
,
Cook
,
N.
, and
Jaimes
,
D.
,
2024
, “
Industry R&D Needs in Hydrogen Safety
,”
Appl. Energy Combust. Sci.
,
18
, p.
100271
.
5.
Peng
,
Y.
,
Wang
,
T.
,
Sheng
,
Y. H.
,
Yu
,
Y. Y.
,
Li
,
R. K.
,
Su
,
B.
,
Cheng
,
F. M.
,
Qu
,
J.
,
Deng
,
J.
, and
Luo
,
Z. M.
,
2024
, “
Recent Advances in Hydrogen Process Safety: Deflagration Behaviors and Explosion Mitigation Strategies
,”
Process Saf. Environ. Prot.
,
188
, pp.
303
316
.
6.
Ekoto
,
I. W.
,
Houf
,
W. G.
,
Evans
,
G. H.
,
Merilo
,
E. G.
, and
Groeth
,
M. A.
,
2012
, “
Experimental Investigation of Hydrogen Release and Ignition From Fuel Cell Powered Forklifts in Enclosed Spaces
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17446
17456
.
7.
Houf
,
W. G.
,
Evans
,
G. H.
,
Ekoto
,
I. W.
,
Merilo
,
E. G.
, and
Groethe
,
M. A.
,
2013
, “
Hydrogen Fuel-Cell Forklift Vehicle Releases in Enclosed Spaces
,”
Int. J. Hydrogen Energy
,
38
(
19
), pp.
8179
8189
.
8.
Houf
,
W. G.
,
Evans
,
G. H.
,
Merilo
,
E. G.
,
Groethe
,
M.
, and
Jame
,
S. C.
,
2012
, “
Releases From Hydrogen Fuel-Cell Vehicles in Tunnels
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
715
719
.
9.
Hajji
,
Y.
,
Bouteraa
,
M.
,
Elcafsi
,
A.
,
Belghith
,
A.
,
Bournot
,
P.
, and
Kallel
,
F.
,
2015
, “
Natural Ventilation of Hydrogen During a Leak in a Residential Garage
,”
Renew. Sustain. Energy Rev.
,
50
, pp.
810
818
.
10.
Song
,
B.
,
Wang
,
X.
,
Kang
,
Y.
, and
Li
,
H.
,
2024
, “
Research on Hydrogen Leakage Diffusion and Safety Analysis in Hydrogen Fuel Cell Vehicles With Regard to Leakage Location and Ventilation Ports
,”
Int. J. Hydrogen Energy
,
83
, pp.
173
187
.
11.
Kang
,
Y.
,
Ma
,
S.
,
Song
,
B.
,
Xia
,
X.
,
Wu
,
Z.
,
Zhang
,
X.
, and
Zhao
,
M.
,
2024
, “
Simulation of Hydrogen Leakage Diffusion Behavior in Confined Space
,”
Int. J. Hydrogen Energy
,
53
, pp.
75
85
.
12.
Wang
,
L.
,
Lyu
,
X.
,
Zhang
,
J.
,
Liu
,
F.
,
Li
,
X.
,
Qiu
,
X.
,
Song
,
Q.
,
Lin
,
J.
, and
Ma
,
T.
,
2024
, “
Analysis of Hydrogen Leakage Behavior and Risk Mitigation Measures in a Hydrogen Refueling Station
,”
Int. J. Hydrogen Energy
,
83
, pp.
545
552
.
13.
Wang
,
L.
,
Lyu
,
X.
,
Zhang
,
S.
,
Zhang
,
J.
,
Li
,
X.
,
Chen
,
J.
,
Song
,
Q.
,
Lin
,
J.
, and
Ma
,
T.
,
2024
, “
The Simulation and Analysis of Leakage, Diffusion Behavior, and Risk Mitigation Measures in a Hydrogen-Refueling Station
,”
Energy Technol.
,
12
(
8
), p.
2400620
.
14.
Wang
,
F.
,
Xiao
,
J.
,
Kuznetsov
,
M.
,
Breitung
,
W.
,
He
,
B.
,
Rui
,
S.
,
Zhou
,
S.
,
Jordan
,
T.
,
Song
,
K.
, and
Zhang
,
L.
,
2024
, “
Deterministic Risk Assessment of Hydrogen Leak From a Fuel Cell Truck in a Real-Scale Hydrogen Refueling Station
,”
Int. J. Hydrogen Energy
,
50
, pp.
1103
1118
.
15.
Malakhov
,
A. A.
,
Avdeenkov
,
A. V.
,
du Toit
,
M. H.
, and
Bessarabov
,
D. G.
,
2020
, “
CFD Simulation and Experimental Study of a Hydrogen Leak in a Semi-Closed Space With the Purpose of Risk Mitigation
,”
Int. J. Hydrogen Energy
,
45
(
15
), pp.
9231
9240
.
16.
Liu
,
S.
, and
He
,
R.
,
2022
, “
Optimized Model-Based Diagnosis Approach for Hydrogen Leakage in Hydrogen Supply System of Fuel Cell Truck
,”
Int. J. Energy Res.
,
46
(
12
), pp.
17720
17725
.
17.
Li
,
Y.
,
Jiang
,
X.
,
Qi
,
W.
,
Wang
,
X.
,
Hou
,
X.
, and
Hong
,
Y.
,
2024
, “
Effects of Relative Position of Dual Vents in the Passenger Cabin of Fuel Cell Bus on Leaking Hydrogen Dispersion
,”
Renew. Energy
,
235
, p.
121300
.
18.
Shucheng
,
Z.
,
Lyu
,
X.
,
Wang
,
L.
,
Li
,
X.
,
Yu
,
Y.
,
Zhao
,
H.
,
Wang
,
S.
, and
Guo
,
Z.
,
2024
, “
Effect of Hydrogen Plant Structure on Hydrogen Diffusion
,”
2024 31st International Conference on Nuclear Engineering
,
Prague, Czech Republic
,
Aug. 4–8
, p.
V010T12A010
(ICONE31-135092).
19.
Liu
,
M.
,
Jiang
,
C.
,
Khoo
,
B. C.
,
Zhu
,
H.
, and
Gao
,
G.
,
2024
, “
A Cell-Based Smoothed Finite Element Model for the Analysis of Turbulent Flow Using Realizable Model and Mixed Meshes
,”
J. Comput. Phys.
,
501
, pp.
0021
9991
.
20.
Cui
,
W.
,
Yuan
,
Y.
,
Tong
,
L.
, and
Shen
,
B.
,
2023
, “
Numerical Simulation of Hydrogen Leakage Diffusion in Seaport Hydrogen Refueling Station
,”
Int. J. Hydrogen Energy
,
48
(
63
), pp.
24521
24535
.
21.
Xie
,
Y.
,
Liu
,
J.
,
Qin
,
J.
,
Xu
,
Z.
,
Zhu
,
J.
,
Liu
,
G.
, and
Yuan
,
H.
,
2024
, “
Numerical Simulation of Hydrogen Leakage and Diffusion in a Ship Engine Room
,”
Int. J. Hydrogen Energy
,
55
, pp.
42
54
.
22.
Tian
,
Y.
,
Qin
,
C.
,
Yang
,
Z.
, and
Hao
,
D.
,
2024
, “
Numerical Simulation Study on the Leakage and Diffusion Characteristics of High-Pressure Hydrogen Gas in Different Spatial Scenes
,”
Int. J. Hydrogen Energy
,
50
, pp.
1335
1349
.
You do not currently have access to this content.